Sep 29, 2024
The Singularity Is Coming Soon. What Will The World Look Like In 2035?
Posted by Dan Breeden in categories: robotics/AI, singularity
The impacts of the Singularity and AI in the next 10 years.
The impacts of the Singularity and AI in the next 10 years.
The study of computational biology is essential to understanding this transition. By exploring how life processes information, we gain insights into the nature of consciousness and intelligence itself. Computational models are key to revealing how systems organize, adapt, and evolve toward greater complexity and self-awareness. This progression suggests a future where intelligence is no longer bound by biological limitations but extends into the realm of artificial systems, creating a symbiotic relationship between humans and machines.
Ultimately, NOOGENESIS challenges traditional scientific paradigms by framing the universe as an informational “self-simulating” entity, where consciousness plays a central role in its evolutionary processes. The origins of life, the evolution of intelligence, and the potential for a post-Singularity future are all part of this grand narrative. By embracing this view, we can cultivate a more comprehensive understanding of the universe and our place within it—one that recognizes the fundamental role of consciousness in shaping reality and guiding evolution toward the apotheosis of Omega Singularity, the final convergence of intelligence and complexity.
New research suggests that black holes may actually be “frozen stars,” bizarre quantum objects that lack a singularity and an event horizon, potentially solving some of the biggest paradoxes in black hole physics.
Artificial intelligence (AI) is on the brink of reaching a new significant milestone. A team of researchers aims to develop artificial general intelligence (AGI), capable of surpassing human intelligence in various fields, by establishing a global network of ultra-powerful supercomputers. This project, led by SingularityNET, will commence in September with the launch of the first supercomputer specifically designed for this purpose.
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
Humanity is on the verge of AGI (Artificial General Intelligence). Futurist Ray Kurzweil predicted decades ago that we would reach AGI in 2029. AI and Large Language Models could reach AGI sooner than 2029. However, the definitions of artificial intelligence that surpasses individual humans has issues around definitions and measurement.
Kurzweil also predicted the Singularity in 2045. He defined that as having cumulative artificial intelligence beyond the total intelligence of humanity.
Beyond the Singularity is Computronium and the limits of technology and the limits of computing.
Now 76, the inventor and futurist hopes to reach “the Singularity” and live indefinitely. His margin of error is shrinking.
The cost effectiveness of bots is key to the magnitude of impact of the Economic Singularity. Watch this cheap bot as companies find profitable use cases and unemployment rises.
Unitree unveiled a new video of its G1 robot performing acrobatic feats, as part of its lead up to production.
Figure 5 is the second key result of our work. It demonstrates a robust route to decomposing the contributions to the overall chiral optical signal, originating from interfering pathways encoding different topological charge. The decomposition relies on straightforward Fourier analysis of the far-field image. Given the ability to precisely control the orientation of the polarization ellipse of the incident infrared light, chiral topological light generated by such infrared drivers stands out as a robust probe of molecular chirality, capable of inducing strongly enantiosensitive total intensity signals as well as giant rotations of intense spectral features.
The concept of chiral topological light introduced here is not limited to vortex beams: other members of the larger family of structured light beams32,33,34 can be used to create locally and globally chiral topological light. We envision using tightly focused radially polarized beams, which are known to posses strong longitudinal components35, central to the concept of local chirality. Skyrmionic beams36,37 could also be used, for example to induce topological distributions with radially dependent topological charges. From the perspective of structured light32,33,34,38 the temporally chiral vortex introduced here represents a new kind of polarization singularity, which could be analysed by extending the current framework from monochromatic 3D fields39,40 to polychromatic 3D fields13,41,42.
Our method is not limited to high harmonics. Its extension to low-order parametric processes such as chiral sum-frequency generation43 has potential for non-destructive enantiosensitive imaging in the ultraviolet region and for exploiting intrinsically low-order nonlinearities for enantiosensitive detection in the X-ray domain16,17.
Join Randal Koene, a computational neuroscientist, as he dives into the intricate world of whole brain emulation and mind uploading, while touching on the ethical pillars of AI. In this episode, Koene discusses the importance of equal access to AI, data ownership, and the ethical impact of AI development. He explains the potential future of AGI, how current social and political systems might influence it, and touches on the scientific and philosophical aspects of creating a substrate-independent mind. Koene also elaborates on the differences between human cognition and artificial neural networks, the challenge of translating brain structure to function, and efforts to accelerate neuroscience research through structured challenges.
00:00 Introduction to Randal Koene and Whole Brain Emulation.
00:39 Ethical Considerations in AI Development.
02:20 Challenges of Equal Access and Data Ownership.
03:40 Impact of AGI on Society and Development.
05:58 Understanding Mind Uploading.
06:39 Randall’s Journey into Computational Neuroscience.
08:14 Scientific and Philosophical Aspects of Substrate Independent Minds.
13:07 Brain Function and Memory Processes.
25:34 Whole Brain Emulation: Current Techniques and Challenges.
32:12 The Future of Neuroscience and AI Collaboration.