Menu

Blog

Archive for the ‘quantum physics’ category: Page 78

Jun 14, 2024

Dark matter turns out to be an echo of a parallel Universe

Posted by in categories: cosmology, particle physics, quantum physics

The study is based on several intriguing coincidences. First, observations show that there is about the same amount of ordinary and dark matter, which exceeds baryonic by about five times. And secondly, neutrons and protons have almost the same mass, which allows them to form stable atoms — this is a random but stable property of the quantum world, because otherwise our universe would not be home to any of the atoms that make up stars, planets and ourselves.

In fact, the theory suggests that there may be a parallel universe like ours in which neutrons and protons do not have such convenient symmetry in mass. In this world, there is a “soup” of subatomic particles that interact little, which explains why dark matter does not seem to clump together.

It is important to note that this is just one more of many hypotheses that try to explain the mystery of dark matter – an annoying and lingering unknown in our understanding of the universe.

Jun 14, 2024

Conservative Black Hole Scattering at Fifth Post-Minkowskian and First Self-Force Order

Posted by in categories: cosmology, quantum physics

Quantum field theory techniques are employed to compute the conservative scattering dynamics of a pair of black holes to the fifth order in Newton’s constant.

Jun 14, 2024

Fascinating behavior of “super photons” in the quantum realm

Posted by in categories: particle physics, quantum physics

Have you ever wondered what happens when thousands of particles of light merge into a single entity? This phenomenon, known as a “super photon,” has fascinated physicists for years.

Now, researchers have made an intriguing discovery that broadens our understanding of this exotic quantum state.

Dr. Julian Schmitt and his colleagues from the Institute of Applied Physics at the University of Bonn have shown that photon Bose-Einstein condensates, also known as quantum gases, obey a fundamental theorem of physics.

Jun 13, 2024

A Step toward Quantum Gases of Doubly Polar Molecules

Posted by in category: quantum physics

Researchers created an ultracold gas of molecules with strong magnetic dipoles, which may lead to new types of Bose-Einstein condensates.

Jun 13, 2024

Quantum data assimilation offers new approach to weather prediction

Posted by in categories: mathematics, quantum physics

Data assimilation is a mathematical discipline that integrates observed data and numerical models to improve the interpretation and prediction of dynamical systems. It is a crucial component of Earth sciences, particularly in numerical weather prediction (NWP).

Jun 13, 2024

Tunable entangled photon-pair generation in a liquid crystal

Posted by in categories: engineering, quantum physics

One of the most remarkable features discovered in these experiments is the unprecedented tunability of the two-photon state, achieved by manipulating the LC molecular orientation. By re-orienting the molecules through the application of an electric field, we can dynamically switch the polarization state of the generated photon pairs. This level of control over the photon pairs’ polarization properties is a crucial advancement, offering opportunities for quantum-state engineering in the sources with pixelwise-tunable optical properties, both linear and nonlinear.

Alternatively, we can manipulate the polarization state by implementing a molecular orientation twist along the sample. This approach adds versatility to the design and utilization of LC-based photon-pair sources. Moreover, a strong twist along the sample can markedly increase the efficiency of a macroscopically large source, similar to the periodic poling of bulk crystals and waveguides, but much simpler technologically, as the structure is self-assembled and may be tuned with temperature and electric field39. Owing to their nonlinear coefficient comparable to the best nonlinear crystals, such as lithium niobate, and high damage threshold, FNLCs are perfectly suitable for practical applications. Furthermore, high-quality LC devices such as LC displays are made on an industrial scale, which, combined with our work, opens a path to scalable and cheap production of quantum light sources while exceeding the existing ones in efficiency and functionality.

In the future, the electric-field tuning could be expanded to multi-pixel devices, which have the potential to generate tunable high-dimensional entanglement and multiphoton states. Furthermore, FNLCs can self-assemble in a variety of complex topological structures, which are expected to emit photon pairs in complex, spatially varying beams (structured light), such as vector and vortex beams40. The liquid nature of FNLCs opens a path to their integration with existing optical platforms such as fibres41, waveguides42 and metasurfaces43.

Jun 13, 2024

Quantum Teleportation Just Got Real: Achieving 90% Fidelity Amidst Noise

Posted by in category: quantum physics

Scientists have advanced quantum teleportation by mitigating noise interference through a novel method involving hybrid entanglement, achieving close to 90% fidelity in teleporting quantum states, which could significantly enhance secure quantum communication.

A research team led by Academician Guangcan Guo from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), in collaboration with the research team at the University of Turku, Finland, successfully overcame environmental noise to achieve high-fidelity quantum teleportation by utilizing multipartite hybrid entanglement. Their findings were published recently in the journal Science Advances.

Overcoming Challenges in Quantum Teleportation.

Jun 13, 2024

New method integrates quantum dots with metasurfaces for enhanced luminescence

Posted by in category: quantum physics

A study published in Nano Letters demonstrates the use of quantum dots to create metasurfaces, enabling two objects to exist in the same space.

Jun 13, 2024

Retrocausality and Quantum Mechanics

Posted by in categories: futurism, quantum physics

The exact empirical evidence for retrocausality does not exist yet, but the existing empirical data as those from Bell tests may be interpreted in a way to support the retrocausal framework.

Have you ever thought that future states could affect the events that have occurred in the past? Although this idea sounds quite bizarre, it is indeed possible according to a quantum mechanical effect called retrocausality. According to the concept, causality and time do not work in the conventional sense and remarkably, an effect can predate its cause, thus reversing the directionality of time as well.

Usually, in the classical world, this is not what we actually experience. For every cause, there is a corresponding effect, but they work sequentially rather than in the reverse way. Conventional thought process suggests that once a particular event has occurred, there’s almost zero probability that it can be reversed. The physical reason is simple, and it has to do with the arrow of time. In general, the arrow of time points in a single forward direction and this is one of the major unsolved challenges of the foundations of physics because physicists are uncertain of why the nature of time is such.

Jun 13, 2024

Quantum Magic: How “Super Photons” Are Shaping the Future of Physics

Posted by in categories: particle physics, quantum physics

Researchers at the University of Bonn have demonstrated that super photons, or photon Bose-Einstein condensates, conform to fundamental physics theorems, enabling insights into properties that are often difficult to observe.

Under suitable conditions, thousands of particles of light can merge into a type of “super photon.” Physicists call such a state a photon Bose-Einstein condensate. Researchers at the University of Bonn have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access. The study was published on June 3 in the journal Nature Communications.

If many atoms are cooled to a very low temperature confined in a small volume, they can become indistinguishable and behave like a single “super particle.” Physicists also call this a Bose-Einstein condensate or quantum gas. Photons condense based on a similar principle and can be cooled using dye molecules. These molecules act like small refrigerators and swallow the “hot” light particles before spitting them out again at the right temperature.

Page 78 of 836First7576777879808182Last