Menu

Blog

Archive for the ‘quantum physics’ category: Page 773

Jul 6, 2016

Probing Quantum Phenomena in Tiny Transistors

Posted by in categories: computing, nanotechnology, quantum physics

Nearly 1,000 times thinner than a human hair, nanowires can only be understood with quantum mechanics. Using quantum models, physicists from Michigan Technological University have figured out what drives the efficiency of a silicon-germanium (Si-Ge) core-shell nanowire transistor.

Core-Shell Nanowires

The study, published last week in Nano Letters, focuses on the quantum tunneling in a core-shell nanowire structure. Ranjit Pati, a professor of physics at Michigan Tech, led the work along with his graduate students Kamal Dhungana and Meghnath Jaishi.

Continue reading “Probing Quantum Phenomena in Tiny Transistors” »

Jul 5, 2016

Quantum fingerprinting surpasses classical limit

Posted by in category: quantum physics

Nice.


(Phys.org)—As the saying goes, no two fingerprints are alike, and the same is true for quantum fingerprints. Just as a human fingerprint is only a fraction of the size of a person, yet can be used to distinguish between any two people (at least in theory), quantum fingerprints are exponentially smaller than the string of information they represent, yet they can be used to distinguish between any two strings.

Ever since quantum fingerprinting was first proposed in 2001, it has for the most part remained an interesting theoretical concept, with only a handful of protocols having managed to experimentally demonstrate the idea.

Continue reading “Quantum fingerprinting surpasses classical limit” »

Jul 5, 2016

Bowtie-shaped nanostructures may advance the development of quantum devices

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices.

The research team led by Prof. Gilad Haran of Weizmann’s Chemical Physics Department — postdoctoral fellow Dr. Kotni Santhosh, Dr. Ora Bitton of Chemical Research Support and Prof. Lev Chuntonov of the Technion-Israel Institute of Technology — manufactured two-dimensional bowtie-shaped silver nanoparticles with a minuscule gap of about 20 nanometers (billionths of a meter) in the center. The researchers then dipped the “bowties” in a solution containing quantum dots, tiny semiconductor particles that can absorb and emit light, each measuring six to eight nanometers across. In the course of the dipping, some of the quantum dots became trapped in the bowtie gaps.

Under exposure to light, the trapped dots became “coupled” with the bowties — a scientific term referring to the formation of a mixed state, in which a photon in the bowtie is shared, so to speak, with the quantum dot. The coupling was sufficiently strong to be observed even when the gaps contained a single quantum dot, as opposed to several. The bowtie nanoparticles could thus be prompted to switch from one state to another: from a state without coupling to quantum dots, before exposure to light, to the mixed state characterized by strong coupling, following such exposure.

Continue reading “Bowtie-shaped nanostructures may advance the development of quantum devices” »

Jul 5, 2016

Quantum physics meets IT security

Posted by in categories: computing, government, quantum physics, security, singularity, space

Nice that they are trying to ensure this. However, as we integrate more tech into Biocomputing space and our efforts in achieving singularity; you will need some level of a medical/ or bio background.


It’s hard enough for IT security managers to keep with the latest in conventional computing. Cloud Security Alliance and the US government are trying to make sure you don’t need a physics degree, too.

Read more

Jul 4, 2016

China to launch ‘hack-proof’ quantum satellite next month

Posted by in categories: computing, encryption, quantum physics, satellites

Get ready.


China will launch the world’s first quantum satellite next month to demonstrate a series of advanced technologies such as hacker-proof communications and quantum teleportation.

Ground testing and quality checks on the satellite had finished at the Chinese Academy of Sciences, and it would depart for the Jiuquan Satellite Launch Centre in Inner Mongolia early this month for a launch aboard a Long March 2D rocket in the middle of next month, according to a report on the central government’s website posted on Friday.

Continue reading “China to launch ‘hack-proof’ quantum satellite next month” »

Jul 4, 2016

Quantum physics and consciousness

Posted by in categories: neuroscience, quantum physics

According to this theory, nothing really happens in physical world. Physical world is just a manifestation of the our consciousness. It seems that ancient Indian yogis have always known this. They have always believed in supreme consciousness which runs cosmos.

Read more

Jul 3, 2016

Proof Beyond a Reasonable Doubt That Majorana Fermions Exist

Posted by in categories: computing, cosmology, particle physics, quantum physics

Not only could they transform quantum computing, they’re a candidate for dark matter.

A team of Chinese physicists from Shanghai’s Jiaotong University have proof beyond a reasonable doubt of the existence of the Majorana fermion — a special particle that could potentially revolutionize quantum computing.

“The search for this particle is for condensed-matter physicists what the Higgs boson search was for high-energy particle physicists,” said Leonid Rokhinson, an associate professor of physics at Purdue University, who was the first to detect the signature of the fermion in 2012 but was not involved in this study, in a 2012 press release. “It is a very peculiar object because it is a fermion yet it is its own antiparticle with zero mass and zero charge.”

Continue reading “Proof Beyond a Reasonable Doubt That Majorana Fermions Exist” »

Jul 2, 2016

Quantum Entanglement Holds DNA Together, Say Physicists

Posted by in category: quantum physics

A new theoretical model suggests that quantum entanglement helps prevent the molecules of life from breaking apart.

Read more

Jul 2, 2016

Quantum technologies to revolutionise 21st century — Nobel Laureates discuss at Lindau

Posted by in categories: computing, economics, quantum physics

Nice read.


Is quantum technology the future of the 21st century? On the occasion of the 66th Lindau Nobel Laureate Meeting, this is the key question to be explored today in a panel discussion with the Nobel Laureates Serge Haroche, Gerardus ’t Hooft, William Phillips and David Wineland. In the following interview, Council Member Professor Rainer Blatt, internationally renowned quantum physicist, recipient of numerous honours, and Scientific Co-Chairman of the 66th Lindau Meeting, talks about what we can expect from the “second quantum revolution”.

Blatt has no doubt: quantum technologies are driving forward a technological revolution, the future impact of which is still unclear. Nothing stands in the way of these technologies becoming the engine of innovations in science, economics and society in the 21st century. Early laboratory prototypes have shown just how vast the potential of quantum technologies is. Specific applications are expected in the fields of metrology, computing and simulations. However, substantial funding is required to advance from the development stage.

Continue reading “Quantum technologies to revolutionise 21st century — Nobel Laureates discuss at Lindau” »

Jun 30, 2016

Quantum technologies to revolutionize 21st century

Posted by in categories: computing, economics, particle physics, quantum physics

Is quantum technology the future of the 21st century? On the occasion of the 66th Lindau Nobel Laureate Meeting, this is the key question to be explored today in a panel discussion with the Nobel Laureates Serge Haroche, Gerardus ‘t Hooft, William Phillips and David Wineland. In the following interview, Professor Rainer Blatt, internationally renowned quantum physicist, recipient of numerous honours, Council Member and Scientific Co-Chairman of the 66th Lindau Meeting, talks about what we can expect from the “second quantum revolution”.

Blatt has no doubt: are driving forward a technological revolution, the future impact of which is still unclear. Nothing stands in the way of these technologies becoming the engine of innovations in science, economics and society in the . Early laboratory prototypes have shown just how vast the potential of quantum technologies is. Specific applications are expected in the fields of metrology, computing and simulations. However, substantial funding is required to advance from the development stage.

Professor Blatt, the first quantum revolution laid the physical foundations for trailblazing developments such as computer chips, lasers, magnetic resonance imaging and modern communications technology. In the Quantum Manifest published in mid-May, researchers now talk about the advent of a second quantum revolution. What exactly does this mean?

Continue reading “Quantum technologies to revolutionize 21st century” »