Menu

Blog

Archive for the ‘quantum physics’ category: Page 70

Aug 22, 2024

Study uncovers condensed-matter dark states in a quantum system with two pairs of sublattices

Posted by in category: quantum physics

Dark states are quantum states in which a system does not interact with external fields, such as light (i.e., photons) or electromagnetic fields. These states, which generally occur due to interferences between the pathways through which a system interacts with an external field, are undetectable using spectroscopic techniques.

Aug 22, 2024

3D ion magnet offers new experimental frontier for quantum information processing

Posted by in categories: computing, particle physics, quantum physics

Many quantum devices, from quantum sensors to quantum computers, use ions or charged atoms trapped with electric and magnetic fields as a hardware platform to process information.

Aug 22, 2024

Scientists demonstrate innovative perovskite waveguides with edge lasing effect

Posted by in categories: innovation, quantum physics

Integrated photonic circuits operating at room temperature combined with optical nonlinear effects could revolutionize both classical and quantum signal processing. Scientists from the Faculty of Physics at the University of Warsaw, in collaboration with other institutions from Poland as well as Italy, Iceland, and Australia, have demonstrated the creation of perovskite crystals with predefined shapes that can serve in nonlinear photonics as waveguides, couplers, splitters, and modulators.

Aug 22, 2024

World’s first micromachine twists 2D materials at will

Posted by in categories: particle physics, quantum physics

Just a few years ago, researchers discovered that changing the angle between two layers of graphene, an atom-thick sheet of carbon, also changed the material’s electronic and optical properties. They then learned that a “twist” of 1.1 degrees—dubbed the “magic” angle—could transform this metallic material into an insulator or a superconductor, a finding that ignited excitement about a possible pathway to new quantum technologies.

Aug 22, 2024

Can Quantum Physics Explain Consciousness After All?

Posted by in categories: neuroscience, open access, quantum physics

Check out my own course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Nobel Prize winner Roger Penrose famously believes that the collapse of the wave-function in quantum mechanics causes consciousness. A group of physicists now tries to improve on Penroses idea in a new paper. I have some comments…

Continue reading “Can Quantum Physics Explain Consciousness After All?” »

Aug 22, 2024

Multiverse as an Ensemble of Stable and Unstable Universes

Posted by in categories: cosmology, particle physics, quantum physics

Read the paper published in our journal Symmetry:, which has been viewed many times, authored by Krzysztof Urbanowski (Uniwersytet Zielonogórski)


Estimates of the Higgs and top quark masses, mH≃125.10±0.14 [GeV] and mt≃172.76±0.30[GeV], based on the experimental result place the Standard Model in the region of the metastable vacuum. A consequence of the metastability of the Higgs vacuum is that it should induce the decay of the electroweak vacuum in the early Universe with catastrophic consequences. It may happen that certain universes were lucky enough to survive the time of canonical decay, that is the exponential decay, and live longer. This means that it is reasonable to analyze conditions allowing for that. We analyze the properties of an ensemble of universes with unstable vacua considered as an ensemble of unstable systems from the point of view of the quantum theory of unstable states. We found some symmetry relations for quantities characterizing the metastable state.

Aug 22, 2024

Molecular wires with a twist

Posted by in categories: computing, mobile phones, particle physics, quantum physics

From the high-voltage wires that carry electricity over long distances, to the tungsten filaments in our incandescent lights, we may have become accustomed to thinking that electrical conductors are always made of metal. But for decades, scientists have been working on advanced materials based on carbon-based oligomer chains that can also conduct electricity. These include the organic light-emitting devices found in some modern smartphones and computers.

In quantum mechanics, electrons are not just point particles with definite positions, but rather can become ‘delocalized’ over a region. A molecule with a long stretch of alternating single-and double-bonds is said to have pi-conjugation, and conductive polymers operate by allowing delocalized electrons to hop between pi-conjugated regions – somewhat like a frog hopping between nearby puddles. However, the efficiency of this process is limited by differences in the energy levels of adjacent regions.

Fabricating oligomers and polymers with more uniform energy levels can lead to higher electrical conductivity, which is necessary for the development of new practical organic electronics, or even single-molecule wires.

Aug 21, 2024

A maximally entangled quantum state with a fixed spectrum does not exist in the presence of noise, mathematician claims

Posted by in category: quantum physics

For more than 20 years, quantum researchers have wondered whether a quantum system can have maximum entanglement in the presence of noise. A mathematician from Spain recently answered the question: No.

Aug 21, 2024

Researchers observe Floquet states in colloidal nanoplatelets driven by visible pulses

Posted by in category: quantum physics

Solution-processed semiconductor nanocrystals are also called colloidal quantum dots (QDs). While the concept of size-dependent quantum effects had long been known to physicists, a sculpture of the theory into real nanodimensional objects remained impossible till the discovery of QDs. The size-dependent colors of QDs are essentially naked-eye, ambient-condition visualizations of the quantum size effect.

Aug 21, 2024

How a quantum sensor on the ISS could revolutionize space exploration

Posted by in categories: particle physics, quantum physics, space travel

I expect that space-based atom interferometry will lead to exciting new discoveries and fantastic quantum technologies impacting everyday life, and will transport us into a quantum future.

Page 70 of 860First6768697071727374Last