Menu

Blog

Archive for the ‘quantum physics’ category: Page 685

Jan 3, 2018

Four-dimensional physics in two dimensions

Posted by in categories: particle physics, quantum physics

For the first time, physicists have built a two-dimensional experimental system that allows them to study the physical properties of materials that were theorized to exist only in four-dimensional space. An international team of researchers from Penn State, ETH Zurich in Switzerland, the University of Pittsburgh, and the Holon Institute of Technology in Israel have demonstrated that the behavior of particles of light can be made to match predictions about the four-dimensional version of the “quantum Hall effect”—a phenomenon that has been at the root of three Nobel Prizes in physics—in a two-dimensional array of “waveguides.”

A paper describing the research appears January 4, 2018 in the journal Nature along with a paper from a separate group from Germany that shows that a similar mechanism can be used to make a gas of exhibit four-dimensional quantum Hall as well.

“When it was theorized that the quantum Hall effect could be observed in four-dimensional space,” said Mikael Rechtsman, assistant professor of physics and an author of the paper, “it was considered to be of purely theoretical interest because the real world consists of only three spatial dimensions; it was more or less a curiosity. But, we have now shown that four-dimensional quantum Hall physics can be emulated using photons—particles of light—flowing through an intricately structured piece of glass—a array.”

Read more

Jan 2, 2018

Quantum Computing Q — US

Posted by in categories: business, computing, quantum physics

IBM Q is an industry-first initiative to build commercially available universal quantum computers for business and science.

Watch video.

Read more

Dec 31, 2017

Progress to turning silicon transistors into qubits which could enable billion qubit quantum computers

Posted by in categories: computing, mobile phones, quantum physics

Japanese RIKEN researchers are trying to adapt existing the silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) to integrate qubits with current electronics, offering the potential for scaling up quantum devices and bringing quantum computing closer to becoming a reality.

Keiji Ono and colleagues from the RIKEN Center for Emergent Matter Science and the Toshiba Corporation in Japan, in collaboration with researchers from the United States, are investigating the properties of qubits produced by imperfections or defects in silicon MOSFETs. In particular, they are exploring their potential for developing quantum computing devices that are compatible with current manufacturing technologies.

“Companies like IBM and Google are developing quantum computers that use superconductors,” explains Ono. “In contrast, we are attempting to develop a quantum computer based on the silicon manufacturing techniques currently used to make computers and smart phones. The advantage of this approach is that it can leverage existing industrial knowledge and technology.”

Continue reading “Progress to turning silicon transistors into qubits which could enable billion qubit quantum computers” »

Dec 18, 2017

The Origin of Our First Interstellar Visitor

Posted by in categories: quantum physics, space travel

We were recently visited by a traveler from outside our solar system. This is the first time we’ve ever seen an object that came to us from interstellar space. It’s name is ‘Oumuamua. Check out http://curiositystream.com/spacetime

You can further support us on Patreon at https://www.patreon.com/pbsspacetime
Get your own Space Time t­shirt at http://bit.ly/1QlzoBi
Tweet at us! @pbsspacetime
Facebook: facebook.com/pbsspacetime
Email us! pbsspacetime [at] gmail [dot] com.
Comment on Reddit: http://www.reddit.com/r/pbsspacetime

Continue reading “The Origin of Our First Interstellar Visitor” »

Dec 18, 2017

A startup uses quantum computing to boost machine learning

Posted by in categories: quantum physics, robotics/AI

If it fulfills its promise, quantum machine learning could transform AI.

Read more

Dec 18, 2017

Canadian QEYSSat Quantum Satellite Program Gets Next Round of Funding

Posted by in categories: economics, encryption, government, quantum physics, space travel

The Canadian Space Agency (CSA) has awarded $1.85M contract to the University of Waterloo for the Quantum Encryption and Science Satellite (QEYSSat) mission.

The QEYSSat mission was one of two projects cited in the 2017 budget when it was unveiled in March of this year. In April, the government sent Innovation Science and Economic Development (ISED) Minister Navdeep Bains to the CSA’s headquarters to formally announce the funding for the QEYSSat mission along with funding for a radar instrument that will be developed for a future orbiter mission to Mars and to announce the Canadian CubeSat Project. The $80.9M of funding would be over five years.

A short history of the QEYSSat mission.

Continue reading “Canadian QEYSSat Quantum Satellite Program Gets Next Round of Funding” »

Dec 16, 2017

Single-photon detector can count to four

Posted by in category: quantum physics

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working in quantum information science around the world, while providing easier paths to developing quantum-based technologies.

The study was a collaboration between Duke University, the Ohio State University and industry partner Quantum Opus, and appeared online on December 14 in the journal Optica.

“Experts in the field were trying to do this more than a decade ago, but their back-of-the-envelope calculations concluded it would be impossible,” said Daniel Gauthier, a professor of physics at Ohio State who was formerly the chair of physics at Duke. “They went on to do different things and never revisited it. They had it locked in their mind that it wasn’t possible and that it wasn’t worth spending time on.”

Read more

Dec 16, 2017

Real-time observation of collective quantum modes

Posted by in categories: particle physics, quantum physics

A cylindrical rod is rotationally symmetric — after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually buckle and lose its rotational symmetry. Such processes, known as “spontaneous symmetry breaking”, also occur in subtle ways in the microscopic quantum world, where they are responsible for a number of fundamental phenomena such as magnetism and superconductivity. A team of researchers led by ETH professor Tilman Esslinger and Senior Scientist Tobias Donner at the Institute for Quantum Electronics has now studied the consequences of spontaneous symmetry breaking in detail using a quantum simulator. The results of their research have recently been published in the scientific journal Science.

Phase transitions caused by symmetry breaking

In their new work, Esslinger and his collaborators took a particular interest in — physical processes, that is, in which the properties of a material change drastically, such as the transition of a material from solid to liquid or the spontaneous magnetization of a solid. In a particular type of phase transition that is caused by , so-called Higgs and Goldstone modes appear. Those modes describe how the particles in a material react collectively to a perturbation from the outside. “Such collective excitations have only been detected indirectly so far,” explains Julian Léonard, who obtained his doctorate in Esslinger’s laboratory now works as a post-doc at Harvard University, “but now we have succeeded in directly observing the character of those modes, which is dictated by symmetry.”

Read more

Dec 16, 2017

BREAKING: Engineers Just Unveiled The First-Ever Design of a Complete Quantum Computer Chip

Posted by in categories: computing, quantum physics

Practical quantum computing has been big news this year, with significant advances being made on theoretical and technical frontiers.

But one big stumbling block has remained – melding the delicate quantum landscape with the more familiar digital one. This new microprocessor design just might be the solution we need.

Continue reading “BREAKING: Engineers Just Unveiled The First-Ever Design of a Complete Quantum Computer Chip” »

Dec 13, 2017

Releases free preview of Quantum Development Kit

Posted by in categories: computing, quantum physics

https://youtube.com/watch?v=doNNClTTYwE

So you want to learn how to program a quantum computer. Now, there’s a toolkit for that.

Microsoft is releasing a free preview version of its Quantum Development Kit, which includes the Q# programming language, a quantum computing simulator and other resources for people who want to start writing applications for a quantum computer. The Q# programming language was built from the ground up specifically for quantum computing.

Continue reading “Releases free preview of Quantum Development Kit” »