Menu

Blog

Archive for the ‘quantum physics’ category: Page 5

Nov 10, 2024

The laws of physics are not fixed | João Magueijo

Posted by in categories: cosmology, genetics, quantum physics

Did the laws of physics come into being at the Big Bang?

Watch the full talk at https://iai.tv/video/the-laws-of-physics-are-not-fixed-joao-…escription.

Continue reading “The laws of physics are not fixed | João Magueijo” »

Nov 10, 2024

Computers Find Impossible Solution, Beating Quantum Tech at Own Game

Posted by in categories: computing, particle physics, quantum physics

Earlier this year, experiments shattered expectations by pushing the limits of what classical computing was believed to be capable of. Not only did the old fashioned binary technology crack a problem considered to be unique to quantum processing, it outperformed it.

Now physicists from the Flatiron Institute’s Center for Computational Quantum Physics in the US have an explanation for the feat which could help better define the boundaries between the two radically different methods of number-crunching.

The problem involves simulating the dynamics of what’s known as a transverse field Ising (TFI) model, which describes the alignment of quantum spin states between particles spread across a space.

Nov 9, 2024

Why AI could eat quantum computing’s lunch

Posted by in categories: chemistry, quantum physics, robotics/AI

Rapid advances in applying artificial intelligence to simulations in physics and chemistry have some people questioning whether we will even need quantum computers at all.

Nov 9, 2024

Dude, Where’s My Quantum Computer? Is the Field Stuck in Limbo?

Posted by in categories: bitcoin, computing, cryptocurrencies, encryption, internet, quantum physics

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about recent discoveries about quantum computers.
Links:
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.22.034003
http://cjc.ict.ac.cn/online/onlinepaper/wc-202458160402.pdf.
https://arxiv.org/pdf/2307.03236
https://www.science.org/doi/10.1126/sciadv.adn8907
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.QasmSimulator.html.
https://arxiv.org/abs/2302.00936
Previous videos:
https://youtu.be/Jl7RLrA69pg.

https://youtu.be/dPqNZ4aya8s.
#quantum #quantumcomputing #quantumcomputer.

Continue reading “Dude, Where’s My Quantum Computer? Is the Field Stuck in Limbo?” »

Nov 9, 2024

Quantum Breakthrough: Time Reversal Symmetry Broken at Record High Temperatures

Posted by in categories: materials, quantum physics

Researchers at Paul Scherrer Institute (PSI), using muon spin rotation at the Swiss Muon Source (SmS), have discovered that a quantum phenomenon called time-reversal symmetry breaking takes place at the surface of the Kagome superconductor RbV₃Sb₅, occurring at temperatures up to 175 K.

This sets a new record for the temperature at which time-reversal symmetry breaking is observed among Kagome systems.

Nov 9, 2024

Implementing topologically ordered time crystals on quantum processors

Posted by in category: quantum physics

In this research, scientists have made an exciting discovery involving “time crystals,” a special kind of phase of matter that behaves in unexpected ways when driven by periodic forces.


In a new study published in Nature Communications, scientists have implemented the topologically ordered time crystal on a quantum processor for the first time.

Nov 9, 2024

Study observes a phase transition in magic of a quantum system with random circuits

Posted by in categories: computing, quantum physics

For error-resistant quantum computers, creating superpositions or entanglement between states is relatively easy. In contrast, adding magic to the state or dislocating them further from easy-to-simulate stabilizer states is expected to be highly challenging.

“In the literature of , you often encounter terms like ‘magic state distillation’ or ‘magic state cultivation,’ which refer to pretty arduous processes to create special quantum states with magic that the quantum computer can make use of,” said Niroula.

“Prior to this paper, we had written a paper that observed a similar transition in entanglement, in which we had observed phases where measurements of a quantum system preserved or destroyed entanglement depending on how frequent they are.”

Nov 9, 2024

Supercomputers Power Unprecedented Advances in Quantum Photonics

Posted by in categories: energy, quantum physics, supercomputing

Scientists have revolutionized the field of quantum photonics by employing high-performance computing to analyze quantum detectors at an unprecedented scale.

Their innovative approach involves the tomographic reconstruction of experimental data, enabling rapid and efficient characterization of photon detectors. This development promises to enhance quantum research significantly, paving the way for advanced applications in quantum computing and communication.

Breakthrough in quantum photonics with high-performance computing.

Nov 9, 2024

Quantum Squeezing: The Key to Next-Gen Precision Technologies

Posted by in category: quantum physics

Quantum squeezing is a method that sharpens precision by redistributing uncertainty within a system, already advancing technologies like atomic clocks. This concept promises even wider impacts as researchers work on applying it to more complex measurements.

Quantum squeezing is a technique in quantum physics that reduces uncertainty in one aspect of a system while increasing it in another. Imagine a balloon filled with air: when it’s untouched, the balloon is perfectly round. If you squeeze one side, it flattens in that spot but stretches in the opposite direction.

Similarly, in a squeezed quantum state, reducing uncertainty (or noise) in one variable, like position, causes increased uncertainty in a related variable, such as momentum. The total uncertainty remains the same, but redistributing it in this way allows for far more precise measurement of one of the variables.

Nov 9, 2024

Twisting Light: Unveiling the Helical Path to Ultrafast Data Transmission

Posted by in categories: computing, internet, quantum physics

A new all-optical switch uses circularly polarized light and an innovative semiconductor to process data faster and more efficiently in fiber-optic systems.

This technology facilitates significant energy savings and introduces a method to control quantum properties in materials, promising major advancements in optical computing and fundamental science.

Modern high-speed internet relies on light to transmit large amounts of data quickly and reliably through fiber-optic cables. However, when data needs to be processed, the light signals face a bottleneck. They must first be converted into electrical signals for processing before they can continue being transmitted.

Page 5 of 833First23456789Last