Menu

Blog

Archive for the ‘quantum physics’ category: Page 339

Nov 7, 2022

Quantum engineers improved the silicon chip performance by 100 times setting a new standard

Posted by in categories: computing, quantum physics

Their quantum computing processors can store information up to two milliseconds.

Researchers from the University of New South Wales have broken new ground in quantum computing by demonstrating that ‘spin qubits’- qubits where the information is stored in the spin momentum of an electron-can store data for up to two milliseconds, 100 times longer than previous benchmarks in the same quantum processor.

Classical computers work with bits—consisting of ones and zeroes—but a quantum computer uses quantum bits or qubits, which, on top of the ones and zeroes, also has a superposition where it can be a one and a zero at the same time.

Continue reading “Quantum engineers improved the silicon chip performance by 100 times setting a new standard” »

Nov 7, 2022

Scientists Suggest Our Brains Work Like Quantum Computers

Posted by in categories: computing, neuroscience, quantum physics

A study conducted by scientists from Trinity College Dublin could suggest that quantum processes are involved in the functions of our brains.

Nov 6, 2022

Quantum Error Correction Will Enable Quantum Telescopes

Posted by in categories: cosmology, quantum physics

Researchers from Australia and Singapore are working on a new quantum technique that could enhance optical VLBI. It’s known as Stimulated Raman Adiabatic Passage (STIRAP), which allows quantum information to be transferred without losses. When imprinted into a quantum error correction code, this technique could allow for VLBI observations into previously inaccessible wavelengths. Once integrated with next-generation instruments, this technique could allow for more detailed studies of black holes, exoplanets, the Solar System, and the surfaces of distant stars.

The interferometry technique consists of combining light from multiple telescopes to create images of an object that would otherwise be too difficult to resolve. Very Long Baseline Interferometry refers to a specific technique used in radio astronomy where signals from an astronomical radio source (black holes, quasars, pulsars, star-forming nebulae, etc.) are combined to create detailed images of their structure and activity. In recent years, VLBI has yielded the most detailed images of the stars that orbit Sagitarrius A* (Sgr A, the SMBH at the center of our galaxy.

Nov 6, 2022

Researchers From MIT Have Developed A New Machine Learning Based Approach With 90 Percent Accuracy To Screen Candidate Materials If They Are Topological For Next-Generation Computer Chips or Quantum Devices

Posted by in categories: biological, chemistry, quantum physics, robotics/AI

Topological materials are a special kind of material that have different functional properties on their surfaces than on their interiors. One of these properties is electrical. These materials have the potential to make electronic and optical devices much more efficient or serve as key components of quantum computers. But recent theories and calculations have shown that there can be thousands of compounds that have topological properties, and testing all of them to determine their topological properties through experiments will take years of work and analysis. Hence, there is a dire need for faster methods to test and study topological materials.

A team of researchers from MIT, Harvard University, Princeton University, and Argonne National Laboratory proposed a new approach that is faster at screening the candidate materials and can predict with more than 90 percent accuracy whether a material is topological or not. The traditional way of solving this problem is quite complicated and can be explained as follows: Firstly, a method called density functional theory is used to perform initial calculations, which are then followed by complex experiments that involve cutting a piece of material to atomic-level flatness and probing it with instruments under high vacuum.

The new proposed method is based on how the material absorbs X-rays, which is different from the old methods, which were based on photoemissions or tunneling electrons. There are certain significant advantages to using X-ray absorption data, which can be listed as follows: Firstly, there is no requirement for expensive lab apparatus. X-ray absorption spectrometers are used, which are readily available and can work in a typical environment, hence the low cost of setting up an experiment. Secondly, such measurements have already been done in chemistry and biology for other applications, so the data is already available for numerous materials.

Nov 6, 2022

Black Holes in Quantum States Have Surprisingly Weird Masses

Posted by in categories: cosmology, mathematics, quantum physics

For the better part of a century, quantum physics and the general theory of relativity have been a marriage on the rocks. Each perfect in their own way, the two just can’t stand each other when in the same room.

Now a mathematical proof on the quantum nature of black holes just might show us how the two can reconcile, at least enough to produce a grand new theory on how the Universe works on cosmic and microcosmic scales.

A team of physicists has mathematically demonstrated a weird quirk concerning how these mind-bendingly dense objects might exist in a state of quantum superposition, simultaneously occupying a spectrum of possible characteristics.

Nov 6, 2022

Finding commercial success in the burgeoning quantum-technology sector

Posted by in categories: computing, quantum physics

This podcast features three executives from quantum-computing companies.

Nov 5, 2022

How the Stern–Gerlach experiment made physicists believe in quantum mechanics

Posted by in category: quantum physics

A century ago, the German physicists Otto Stern and Walther Gerlach carried out an experiment that gave an important credibility boost to the new-fangled notion of quantum mechanics. But as Hamish Johnston discovers, their now-famous experiment succeeded even if the physics on which it was based wasn’t quite right.

Nov 5, 2022

Why Have We Not Found Any Aliens? — with Keith Cooper

Posted by in categories: alien life, computing, quantum physics

After six decades of examining signals from space, why have we yet to discover evidence of extra-terrestrial life?
Keith’s book “The Contact Paradox: Challenging our Assumptions in the Search for Extraterrestrial Intelligence” is available now — https://geni.us/JFpy.

For the past six decades a small cadre of researchers have been on a quest, as part of SETI, to search for extraterrestrial intelligence. So far, SETI has found no evidence of extraterrestrial life, but with more than a hundred billion stars in our Galaxy alone to search, the odds of quick success are stacked against us.

Continue reading “Why Have We Not Found Any Aliens? — with Keith Cooper” »

Nov 5, 2022

A new quantum component made from graphene

Posted by in categories: particle physics, quantum physics

Less than 20 years ago, Konstantin Novoselov and Andre Geim first created two-dimensional crystals consisting of just one layer of carbon atoms. Known as graphene, this material has had quite a career since then.

Due to its exceptional strength, is used today to reinforce products such as tennis rackets, car tires or aircraft wings. But it is also an interesting subject for , as physicists keep discovering new, astonishing phenomena that have not been observed in other materials.

Nov 5, 2022

Quantum Error Correction: Time to Make It Work

Posted by in categories: computing, quantum physics

If technologists can’t perfect it, quantum computers will never be big.