Menu

Blog

Archive for the ‘quantum physics’ category: Page 255

May 28, 2023

Plants perform quantum mechanics feats that scientists can only do at ultra-cold temperatures

Posted by in categories: energy, quantum physics

Plants pass energy along paths similar to those of a Bose-Einstein condensate, showing quantum properties at macroscopic scales.

May 28, 2023

Quantum Chemistry Happening Inside Your Eyes Protects Against Vision Loss

Posted by in categories: chemistry, quantum physics

Every color, every flash, every sunray exacts a toll on the light-sensitive tissues at the back of our eyes, producing toxic materials that risk damaging the very cells that allow us to see.

Thankfully, the pigment responsible for darkening our hair, skin, and eyes moonlights as a clean-up crew, mopping up one such dangerous compound before it accumulates into damaging clumps.

An investigation by researchers from the University of Tübingen in Germany and Yale University has revealed the removal process is somewhat unusual as far as biochemistry goes, relying upon a strange quirk of quantum-like behavior.

May 28, 2023

Commercializing quantum computers step by step

Posted by in categories: computing, quantum physics

Alongside developing a quantum computer, one group of scientists is selling its components to other researchers.

May 28, 2023

Scientists create matter from nothing in groundbreaking experiment

Posted by in categories: cosmology, particle physics, quantum physics

We’ve probably all heard the phrase you can’t make something from nothing. But in reality, the physics of our universe isn’t that cut and dry. In fact, scientists have spent decades trying to force matter from absolutely nothing. And now, they’ve managed to prove that a theory first shared 70 years ago was correct, and we really can create matter out of absolutely nothing.

The universe is made up of several conservation laws. These laws govern energy, charge, momentum, and so on down the list. In the quest to fully understand these laws, scientists have spent decades trying to figure out how to create matter – a feat that is far more complex than it even sounds. We’ve previously turned matter invisible, but creating it out of nothing is another thing altogether.

There are many theories on how to create matter from nothing – especially as quantum physicists have tried to better understand the Big Bang and what could have caused it. We know that colliding two particles in empty space can sometimes cause additional particles to emerge. There are even theories that a strong enough electromagnetic field could create matter and antimatter out of nothing itself.

May 27, 2023

In a first, researchers capture fleeting ‘transition state’ in ring-shaped molecules excited by light

Posted by in categories: chemistry, particle physics, quantum physics

Using a high-speed “electron camera” at the Department of Energy’s SLAC National Accelerator Laboratory and cutting-edge quantum simulations, scientists have directly imaged a photochemical “transition state,” a specific configuration of a molecule’s atoms determining the chemical outcome, during a ring-opening reaction in the molecule α-terpinene. This is the first time that scientists have precisely tracked molecular structure through a photochemical ring-opening reaction, triggered when light energy is absorbed by a substance’s molecules.

The results, published in Nature Communications, could further our understanding of similar reactions with vital roles in chemistry, such as the production of vitamin D in our bodies.

Transition states generally occur in which are triggered not by light but by heat. They are like a point of no return for molecules involved in a chemical reaction: As the molecules gain the energy needed to fuel the reaction, they rearrange themselves into a fleeting configuration before they complete their transformation into new molecules.

May 27, 2023

Fractons as information storage: Not yet tangible, but close

Posted by in categories: energy, mathematics, quantum physics

Excitations in solids can also be represented mathematically as quasiparticles; for example, lattice vibrations that increase with temperature can be well described as phonons. Mathematically, also quasiparticles can be described that have never been observed in a material before. If such “theoretical” quasiparticles have interesting talents, then it is worth taking a closer look. Take fractons, for example.

Fractons are fractions of spin excitations and are not allowed to possess kinetic energy. As a consequence, they are completely stationary and immobile. This makes fractons new candidates for perfectly secure information storage. Especially since they can be moved under special conditions, namely piggyback on another quasiparticle.

“Fractons have emerged from a mathematical extension of quantum electrodynamics, in which electric fields are treated not as vectors but as tensors—completely detached from real materials,” explains Prof. Dr. Johannes Reuther, at the Freie Universität Berlin and at HZB.

May 27, 2023

“Shuttled” Ions Stay Quantum

Posted by in category: quantum physics

Researchers move an individual Mg+ ion more than 100,000 times between different sites in a trapping array without dropping it or ruining its quantum coherence.

May 26, 2023

The 3 Quantum Computing Stocks You Need to Own

Posted by in categories: computing, quantum physics

Finding the best quantum computing stocks to buy is critical because this is clearly the next big industry.

Quantum computers promise to bring the power of quantum mechanics to bear in solving our most vexing problems. They may be capable of processing more data, faster, than any classical computer.

If all that happens, then quantum computing stocks may bring generational wealth to their investors.

May 26, 2023

‘Fluxonium’ is the longest lasting superconducting qubit ever

Posted by in categories: computing, quantum physics

😗😁


A fluxonium qubit can keep its most useful quantum properties for about 1.48 milliseconds, drastically longer than similar qubits currently favoured by the quantum computing industry.

By Karmela Padavic-Callaghan

Continue reading “‘Fluxonium’ is the longest lasting superconducting qubit ever” »

May 26, 2023

Daily briefing: Quantum computers are all ‘terrible’ — but researchers aren’t worried

Posted by in categories: computing, quantum physics

Even the scientists who have made quantum computers their life’s work say they can’t do anything useful yet — but the future is bright. Plus, how China’s data privacy laws affects researchers and LIGO is back, better than ever.