Menu

Blog

Archive for the ‘quantum physics’ category: Page 234

Jun 11, 2023

Scientists Just Showed How to Make a Quantum Computer Using Sound Waves

Posted by in categories: computing, particle physics, quantum physics

One thing all quantum computers have in common is the fact that they manipulate information encoded in quantum states. But that’s where the similarities end, because those quantum states can be induced in everything from superconducting circuits to trapped ions, ultra-cooled atoms, photons, and even silicon chips.

While some of these approaches have attracted more investment than others, we’re still a long way from the industry settling on a common platform. And in the world of academic research, experimentation still abounds.

Now, a team from the University of Chicago has taken crucial first steps towards building a quantum computer that can encode information in phonons, the fundamental quantum units that make up sound waves in much the same way that photons make up light beams.

Jun 11, 2023

A new study shows how ‘splitting’ sound takes us one step closer to a new type of quantum computer

Posted by in categories: computing, particle physics, quantum physics

Scientists have demonstrated entanglement and two-particle interference with phonon using an acoustic beam splitter.

Phonons are to sound what photons are to light. Photons are tiny packets of energy for light or electromagnetic waves. Similarly, phonons are packets of energy for sound waves. Each phonon represents the vibration of millions of atoms within a material.

Both photons and phonons are of central interest to quantum computing research, which exploits the properties of these quantum particles. However, phonons have proven challenging to study due to their susceptibility to noise and issues with scalability and detection.

Jun 11, 2023

Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout

Posted by in categories: evolution, quantum physics

The interplay of quantum measurements and unitary evolution is expected to produce dynamical phases with different entanglement properties. An entanglement phase transition has now been detected with hybrid quantum circuits in a superconducting processor.

Jun 11, 2023

Research takes first steps towards realizing mechanical qubits

Posted by in categories: computing, particle physics, quantum physics, security

Quantum information (QI) processing may be the next game changer in the evolution of technology, by providing unprecedented computational capabilities, security and detection sensitivities. Qubits, the basic hardware element for quantum information, are the building block for quantum computers and quantum information processing, but there is still much debate on which types of qubits are actually the best.

Research and development in this field is growing at astonishing paces to see which system or platform outruns the other. To mention a few, platforms as diverse as superconducting Josephson junctions, trapped ions, topological qubits, ultra-cold neutral atoms, or even diamond vacancies constitute the zoo of possibilities to make qubits.

So far, only a handful of platforms have been demonstrated to have the potential for quantum computing, marking the checklist of high-fidelity controlled gates, easy qubit-qubit coupling, and good isolation from the environment, which means sufficiently long-lived coherence.

Jun 10, 2023

China’s photonic quantum computer is 180 million times faster says ‘father of quantum’

Posted by in categories: quantum physics, robotics/AI, supercomputing

It took less than a second to solve a puzzle that super computers would take five years to solve.

A quantum computer, Juizhang, built by a team led by Pan Jianwei, has claimed that it can process artificial intelligence (AI) related tasks 180 million times faster, the South China Morning Post.

Even as the US celebrates its lead in the list of TOP500 supercomputers in the world, China has been slowly building its expertise in the next frontier of computing — quantum computing. Unlike conventional computing, where a bit-the smallest block of information can either exist as one or zero, a bit in quantum computing can exist in both states at once.

Jun 10, 2023

Quantum Computing in AI (a NEW Era of Technology)

Posted by in categories: cybercrime/malcode, finance, quantum physics, robotics/AI

Keep Your Digital Life Private: Stay Safe & Secure Online with NordVPN: https://nordvpn.com/safetyfirst.
Welcome to a thrilling exploration of Quantum Computing in AI! This video breaks new ground in explaining the exciting world of Quantum Computing, its intersection with Artificial Intelligence, and how it ushers us into a revolutionary new era of technology.

In the first segment, we demystify the concept of Quantum Computing. We delve into its complex yet fascinating principles, making it understandable even if you’re a novice in this field. If you’ve ever wondered how quantum bits (qubits) and superposition defy the norms of classical computing, this is your ultimate guide.

Continue reading “Quantum Computing in AI (a NEW Era of Technology)” »

Jun 9, 2023

Scientists propose quantum proof-of-work consensus for blockchain

Posted by in categories: blockchains, computing, particle physics, quantum physics

Boson sampling was once considered a problem looking for a solution. Now, it might be the bridge that brings quantum computing to the blockchain.

Jun 9, 2023

Quantum materials: Electron spin measured for the first time

Posted by in categories: biotech/medical, computing, quantum physics

An international research team has succeeded for the first time in measuring the electron spin in matter—i.e., the curvature of space in which electrons live and move—within “kagome materials,” a new class of quantum materials.

The results obtained—published in Nature Physics —could revolutionize the way quantum materials are studied in the future, opening the door to new developments in quantum technologies, with in a variety of technological fields, from to biomedicine, from electronics to quantum computers.

Success was achieved by an international collaboration of scientists, in which Domenico Di Sante, professor at the Department of Physics and Astronomy “Augusto Righi,” participated for the University of Bologna as part of his Marie Curie BITMAP research project. He was joined by colleagues from CNR-IOM Trieste, Ca’ Foscari University of Venice, University of Milan, University of Würzburg (Germany), University of St. Andrews (UK), Boston College and University of Santa Barbara (U.S.).

Jun 9, 2023

The Classic Principle of Least Action Now Exists in the Quantum Realm

Posted by in category: quantum physics

Whew. Now we don’t need new physics.

Jun 9, 2023

Sound-based quantum computers could be built using chip-sized device

Posted by in categories: computing, particle physics, quantum physics

A chip-sized device can manipulate particles of sound in a way that mimics how particles of light are used in light-based quantum computers, opening the door for building sound-based quantum computers.

By Karmela Padavic-Callaghan