Menu

Blog

Archive for the ‘quantum physics’ category: Page 204

Oct 4, 2023

IonQ Announces 2 New Quantum Systems; Suggests Quantum Advantage is Nearing

Posted by in categories: business, particle physics, quantum physics, robotics/AI

It’s been a busy week for IonQ, the quantum computing start-up focused on developing trapped-ion-based systems. At the Quantum World Congress today, the company announced two new systems (Forte Enterprise and Tempo) intended to be rack-mountable and deployable in a traditional data center. Yesterday, speaking at Tabor Communications (HPCwire parent organization) HPC and AI on Wall Street conference, the company made a strong pitch for reaching quantum advantage in 2–3 years, using the new systems.

If you’ve been following quantum computing, you probably know that deploying quantum computers in the datacenter is a rare occurrence. Access to the vast majority NISQ era computers has been through web portals. The latest announcement from IonQ, along with somewhat similar announcement from neutral atom specialist QuEra in August, and increased IBM efforts (Cleveland Clinic and PINQ2) to selectively place on-premise quantum systems suggest change is coming to the market.

IonQ’s two rack-mounted solutions are designed for businesses and governments wanting to integrate quantum capabilities within their existing infrastructure. “Businesses will be able to harness the power of quantum directly from their own data centers, making the technology significantly more accessible and easy to apply to key workflows and business processes,” reported the company. IonQ is calling the new systems enterprise-grade. (see the official announcement.)

Oct 3, 2023

Physicists who built ultrafast ‘attosecond’ lasers win Nobel Prize

Posted by in categories: biological, chemistry, particle physics, quantum physics

This year’s Nobel Prize in Physics has been awarded to three physicists — Pierre Agostini at Ohio State University, US, Ferenc Krausz at the Max Planck Institute of Quantum Optics in Garching, Germany, and Anne L’Huillier at Lund University, Sweden — for their research into attosecond pulses of light.

Attosecond physics allows scientists to look at the very smallest particles at the very shortest timescales (an attosecond is one-quintillionth of a second, or one-billionth of a nanosecond). The winners all developed experiments to be able to produce these ultrafast laser pulses, which can be used to probe our world at the smallest scales and have applications across chemistry, biology and physics.

The prize was announced this morning by the Royal Swedish Academy of Sciences, in Stockholm, Sweden. The winners share a prize of 11 million Swedish kroner (US$1 million).

Oct 3, 2023

Efforts to create ultrafast light pulses win 2023 physics Nobel

Posted by in categories: particle physics, quantum physics

Congrats to Anne & Pierre.

Inside atoms and molecules, electrons zip around at extreme speeds. Their motions can only be captured with super short pulses of light — like camera flashes that last billionths of a billionth of a second. The 2023 Nobel Prize in physics goes to three physicists who have helped create such “attosecond” blasts of laser light.

By offering superfast snapshots of electrons, their research is changing our view of the inner workings of atoms and molecules.

Continue reading “Efforts to create ultrafast light pulses win 2023 physics Nobel” »

Oct 3, 2023

Quantum Leap: Researchers Achieve Major Milestone for Reliable Quantum Computers

Posted by in categories: computing, quantum physics

In a breakthrough for the futuristic field of quantum computing, researchers have implemented a basic arithmetic operation in a fault-tolerant manner on an actual quantum processor for the first time. In other words, they found a way to bring us closer to more reliable, powerful quantum computers less prone to errors or inaccuracies.

Quantum computers harness the bizarre properties of quantum physics to rapidly solve problems believed to be impossible for classical computers. By encoding information in quantum bits or “qubits,” they can perform computations in parallel, rather than sequentially as with normal bits.

Oct 3, 2023

Quantum Computers Could Crack Encryption Sooner Than Expected With New Algorithm

Posted by in categories: encryption, information science, mathematics, quantum physics, robotics/AI

One of the most well-established and disruptive uses for a future quantum computer is the ability to crack encryption. A new algorithm could significantly lower the barrier to achieving this.

Despite all the hype around quantum computing, there are still significant question marks around what quantum computers will actually be useful for. There are hopes they could accelerate everything from optimization processes to machine learning, but how much easier and faster they’ll be remains unclear in many cases.

One thing is pretty certain though: A sufficiently powerful quantum computer could render our leading cryptographic schemes worthless. While the mathematical puzzles underpinning them are virtually unsolvable by classical computers, they would be entirely tractable for a large enough quantum computer. That’s a problem because these schemes secure most of our information online.

Oct 2, 2023

Simulations reveal the atomic-scale story of qubits

Posted by in categories: computing, engineering, particle physics, quantum physics

Researchers led by Giulia Galli at University of Chicago’s Pritzker School of Molecular Engineering report a computational study that predicts the conditions to create specific spin defects in silicon carbide. Their findings, published online in Nature Communications, represent an important step towards identifying fabrication parameters for spin defects useful for quantum technologies.

Electronic spin defects in semiconductors and insulators are rich platforms for , sensing, and communication applications. Defects are impurities and/or misplaced atoms in a solid and the electrons associated with these carry a spin. This quantum mechanical property can be used to provide a controllable qubit, the basic unit of operation in quantum technologies.

Yet the synthesis of these spin defects, typically achieved experimentally by implantation and annealing processes, is not yet well understood, and importantly, cannot yet be fully optimized. In —an attractive host material for spin qubits due to its industrial availability—different experiments have so far yielded different recommendations and outcomes for creating the desired spin defects.

Oct 2, 2023

MIT’s New Fluxonium Qubit Circuit Enables Quantum Operations With Unprecedented Accuracy

Posted by in categories: quantum physics, supercomputing

The advance brings quantum error correction a step closer to reality.

In the future, quantum computers may be able to solve problems that are far too complex for today’s most powerful supercomputers. To realize this promise, quantum versions of error correction codes must be able to account for computational errors faster than they occur.

However, today’s quantum computers are not yet robust enough to realize such error correction at commercially relevant scales.

Oct 2, 2023

ATLAS achieves highest-energy detection of quantum entanglement

Posted by in categories: particle physics, quantum physics

Quantum entanglement is one of the most astonishing properties of quantum mechanics. If two particles are entangled, the state of one particle cannot be described independently from the other. This is a unique property of the quantum world and forms a crucial difference between classical and quantum theories of physics. It is so important, the 2022 Nobel Prize in Physics was awarded to Alain Aspect, John F. Clauser and Anton Zeilinger “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science”.

The large mass of the top quark, which is greater than any other particle, remains one of the most enduring mysteries of the Standard Model. Why this is so remains unexplained, however, the top quark has many unique properties to exploit as a result. The top quark is so heavy that it is extremely unstable and decays before it has time to hadronise, transferring all of its quantum numbers to its decay particles. Physicists can detect these decay particles and thus reconstruct the quantum state of a top quark, a feat that is impossible with any other quark. Most importantly, they can measure its spin and use it to show that entanglement can be studied in top-quark-pair production at the LHC.

Entanglement has indeed been measured in the past, but not quite like this. Most previous entanglement measurements involved low non-relativistic energies, typically utilising photons or electrons. The LHC collides protons with an incredibly high centre-of-mass energy. The data used in ATLAS’ new measurement were obtained from collisions at 13 TeV collected between 2015 and 2018. This means researchers are delving into an energy scale over 12 orders of magnitude (a thousand billion times) higher than typical laboratory experiments.

Oct 2, 2023

Beyond Combustion: Highly Efficient Quantum Engines on the Horizon

Posted by in categories: computing, particle physics, quantum physics

Scientists unveil exciting possibilities for the development of highly efficient quantum devices.

Quantum mechanics is a branch of physics that explores the properties and interactions of particles at very small scale, such as atoms and molecules. This has led to the development of new technologies that are more powerful and efficient compared to their conventional counterparts, causing breakthroughs in areas such as computing, communication, and energy.

A quantum leap in engine design.

Oct 2, 2023

Researchers advance effort to turn diamonds into a quantum simulator

Posted by in category: quantum physics

Diamonds are often prized for their flawless shine, but Chong Zu, an assistant professor of physics in Arts & Sciences at Washington University in St. Louis, sees a deeper value in these natural crystals. As reported in Physical Review Letters, Zu and his team have taken a major step forward in a quest to turn diamonds into a quantum simulator.

Co-authors of the paper include Kater Murch, the Charles M. Hohenberg Professor of Physics, and Ph.D. students Guanghui He, Ruotian (Reginald) Gong and Zhongyuan Liu. Their work is supported in part by the Center for Quantum Leaps, a signature initiative of the Arts & Sciences that aims to apply quantum insights and technologies to physics, biomedical and , drug discovery and other far-reaching fields.

The researchers transformed by bombarding them with . Some of those nitrogen atoms dislodge carbon atoms, creating flaws in an otherwise perfect crystal. The resulting gaps are filled with electrons that have their own spin and magnetism, that can be measured and manipulated for a wide range of applications.