Menu

Blog

Archive for the ‘physics’ category: Page 272

May 7, 2017

NASA’S STUNNING BREAKTHROUGH: It’s First Warp Drive…Is a TRUE Mindblower!

Posted by in categories: information science, physics, space travel

A few months ago, physicist Harold White shocked the aeronautics industry when he announced that his team at NASA was in the process of developing a faster-than-light warp drive. His design could one day transport a spacecraft to the nearest star in a matter of weeks.

The idea originally came to White while he was considering an equation formulated by physicist Miguel Alcubierre in his 1994 paper titled, “The Warp Drive: Hyper-Fast Travel Within General Relativity. Alcubierre suggested a mechanism by which space-time could be “warped” and behind a spacecraft.

Michio Kaku dubbed Alcubierre’s theory a “passport to the universe,” which harnesses a quirk in the “cosmological code” that allows for the expansion and contraction of space-time. If proven true, it could allow for hyper-fast travel between interstellar destinations. In order to accomplish this, the starship would need able to expand the space behind it rapidly to push it forward. For passengers, it would look like a lack of acceleration.

Continue reading “NASA’S STUNNING BREAKTHROUGH: It’s First Warp Drive…Is a TRUE Mindblower!” »

May 5, 2017

Scientists are waging a war against human aging. But what happens next?

Posted by in categories: biological, life extension, physics

Aubrey de Grey in this new interview with Vox.


We all grow old. We all die.

For Aubrey de Grey, a biogerontologist and chief science officer of the SENS Research Foundation, accepting these truths is, well, not good enough. He decided in his late twenties (he’s currently 54) that he “wanted to make a difference to humanity” and that battling age was the best way to do it. His life’s work is now a struggle against physics and biology, the twin collaborators in bodily decay.

Continue reading “Scientists are waging a war against human aging. But what happens next?” »

Apr 28, 2017

Physicists Just Came Up With a Mathematical Model for a Viable Time Machine

Posted by in categories: mathematics, physics, time travel

Physicists have come up with what they claim is a mathematical model of a theoretical “time machine” — a box that can move backwards and forwards through time and space.

The trick, they say, is to use the curvature of space-time in the Universe to bend time into a circle for hypothetical passengers sitting in the box, and that circle allows them to skip into the future and the past.

“People think of time travel as something as fiction. And we tend to think it’s not possible because we don’t actually do it,” says theoretical physicist and mathematician, Ben Tippett, from the University of British Columbia in Canada.

Continue reading “Physicists Just Came Up With a Mathematical Model for a Viable Time Machine” »

Apr 21, 2017

‘Negative mass’ created at Washington State University

Posted by in category: physics

We are one step closer to actually creating an Alcuberre FTL drive…


Experimental images of an expanding spin-orbit superfluid Bose-Einstein condensate at different expansion times (credit: M. A. Khamehchi et al./Physical Review Letters)

Washington State University (WSU) physicists have created a fluid with “negative mass,” which means that if you push it, it accelerates toward you instead of away, in apparent violation of Newton’s laws.

Continue reading “‘Negative mass’ created at Washington State University” »

Apr 21, 2017

A naked singularity: Can we spot the most extreme object in the universe?

Posted by in categories: cosmology, physics, singularity

A team of scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, India, have found new ways to detect a bare or naked singularity, the most extreme object in the universe.

When the fuel of a very massive star is spent, it collapses due to its own gravitational pull and eventually becomes a very small region of arbitrarily high matter density, that is a ‘Singularity’, where the usual laws of physics may breakdown. If this singularity is hidden within an event horizon, which is an invisible closed surface from which nothing, not even light, can escape, then we call this object a black hole.

In such a case, we cannot see the singularity and we do not need to bother about its effects. But what if the event horizon does not form? In fact, Einstein’s theory of general relativity does predict such a possibility when massive stars collapse at the end of their life-cycles. In this case, we are left with the tantalizing option of observing a naked singularity.

Continue reading “A naked singularity: Can we spot the most extreme object in the universe?” »

Apr 19, 2017

Physicists create mind-bending ‘negative mass’ that accelerates backwards and could help explain black holes

Posted by in categories: cosmology, physics

Scientists have created a fluid with “negative mass” which they claim can be used to explore some of the more challenging concepts of the cosmos.

Washington State University physicists explained that this mass, unlike every physical object in the world we know, accelerates backwards when pushed.

The phenomenon, which is rarely created in laboratory conditions, shows a less intuitive side of Newton’s Second Law of Motion, in which a force is equal to the mass of an object times its acceleration (F=ma).

Continue reading “Physicists create mind-bending ‘negative mass’ that accelerates backwards and could help explain black holes” »

Apr 17, 2017

‘Negative mass’ created for the first time

Posted by in category: physics

Washington State University physicists have created a fluid with negative mass, which is exactly what it sounds like. Push it, and unlike every physical object in the world we know, it doesn’t accelerate in the direction it was pushed. It accelerates backwards. The phenomenon is rarely created in laboratory conditions and can be used to explore some of the more challenging concepts of the cosmos, said Michael Forbes, a WSU assistant professor of physics and astronomy and an affiliate assistant professor at the University of Washington. The research appears today in the journal Physical Review Letters, where it is featured as an “Editor’s Suggestion.” Hypothetically, matter can have negative mass in the same sense that an electric charge can be either negative or positive.

Read more

Apr 15, 2017

Affordable deep space missions using asteroids

Posted by in categories: government, mathematics, physics, space

Phase 1 work demonstrated Optical Mining in the laboratory and performed mission and systems analysis of the application of Optical Mining to human exploration missions. Their mission analysis showed that the most accessible Near Earth Objects (NEOs) can be used to provide NASA with mission consumables for human exploration in deep space with the potential of saving up to $10 billion per year or $150 billion over the 15 year operational life cycle of a human exploration program. This savings alone would be enough to transform NASA’s vision of human exploration from being unaffordable to being affordable within budgets that Congress can approve. Phase 1 technical work included a full scale (8 kW) Optical Mining demonstration using a high fidelity CI-type asteroid simulant in vacuum using sunlight from a 10 meter diameter solar concentrator without mechanical contact or downforce. This work confirmed our physics based mathematical model of the excavation and volatile extraction process and scalability of results from 36 prior, small scale (≈ 1 cm diameter) demonstrations and tests.

Phase 2 work will complete mission and system analysis of the application of Optical Mining to an exciting program of human exploration and we will mature the technology of Optical Mining to the point at which NASA can baseline this approach for an affordable program of human exploration. Our mission studies will address the production via Optical Mining missions to extract and retrieve resources, consumable processing, storage, and application of consumables to human exploration mission in cislunar, NEO and Martian space. The mission studies will be tightly coupled with our laboratory work. Laboratory work will include the development and integration of a 30 kW Optical Mining test apparatus in our laboratory and integration with our high quality vacuum chamber for a test program involving Optical Mining.

Read more

Apr 14, 2017

We May Be Able to Build a Rocket That Can Go 99.999% the Speed of Light

Posted by in categories: mathematics, physics, space travel

Theoretical physics often lifts the sanctions we set on our own imaginations. Whether it’s exploring the possibility of warp drives or understanding the rate of the universe’s expansion, we are quick to explore the unknown on our chalkboards until our tech is ready for our ideas.

In a similar deep-dive into the theoretical, a Norwegian professor argues in the journal Acta Astronautica for the of possibility of photon rockets that can reach 99.999 percent of the speed of light (300,000 km/s [186,000 mph]); asserting that, while humanity can’t do it anytime soon, we could potentially build a spacecraft that falls just short of the ultimate speed limit sometime in the future when the necessary technology is feasible.

*2* A Finance Professor Predicts the Absolute Speed Limit for all Human Spacecrafts

Continue reading “We May Be Able to Build a Rocket That Can Go 99.999% the Speed of Light” »

Apr 13, 2017

Mach Effects for In Space Propulsion: Interstellar Mission

Posted by in categories: cosmology, physics, space travel

NASA is funding Mach effect propulsion in the latest round of advanced concept projects.

Nextbigfuture has covered Woodwards Mach effect propulsion in dozens of articles.

They propose to study the implementation of an innovative thrust producing technology for use in NASA missions involving in space main propulsion. Mach Effect Thruster (MET) propulsion is based on peer-reviewed, technically credible physics. Mach effects are transient variations in the rest masses of objects that simultaneously experience accelerations and internal energy changes. They are predicted by standard physics where Mach’s principle applies – as discussed in peer-reviewed papers spanning 20 years and a recent book, Making Starships and Stargates: the Science of Interstellar Transport and Absurdly Benign Wormholes published recently by Springer-Verlag. These effects have the revolutionary capability to produce thrust without the irreversible ejection of propellant, eliminating the need to carry propellant as required with most other propulsion systems.

Continue reading “Mach Effects for In Space Propulsion: Interstellar Mission” »