Menu

Blog

Archive for the ‘particle physics’ category: Page 85

Apr 17, 2024

Quantum electronics: Charge travels like light in bilayer graphene

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

An international research team led by the University of Göttingen has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be “switched” on and off, which has potential for developing tiny, energy-efficient transistors—like the light switch in your house but at a nanoscale.

Apr 17, 2024

Scientists finally make ‘goldene’, potentially breakthrough new material

Posted by in categories: materials, particle physics

I found this on NewsBreak: Scientists finally make ‘goldene’, potentially breakthrough new material.


Researchers have managed to create “goldene”, an incredibly thin version of gold.

The work follows the successful production of graphene, which is made out of a single layer graphite atoms. That has been hailed as a miracle material: it is astonishingly strong, and much better at conducting heat and electricity than copper.

Continue reading “Scientists finally make ‘goldene’, potentially breakthrough new material” »

Apr 17, 2024

The big idea: are we about to discover a new force of nature?

Posted by in categories: military, nuclear energy, particle physics, satellites

I found this on NewsBreak: The big idea: are we about to discover a new force of nature?


Intriguingly, both disciplines are grappling with unexplained results that could be pointing to the existence of a new force of nature. If such a new force were to be confirmed, the implications for our understanding of the universe, its history and makeup would be profound.

There are four forces that we already know about. Gravity governs the grandest scales, marshalling the planets in their orbits and shaping the evolution of the universe as a whole. Electromagnetic force gives rise to a vast range of phenomena, from the magnetic field of the Earth to radio waves, visible light and X-rays, while also holding atoms, molecules and, by extension, the physical world together. Deep within the atomic nucleus, two further forces emerge: the vice-like “strong force”, which binds atomic nuclei, and the “weak force”, which among other things causes radioactive decay and enables the nuclear reactions that power the sun and the stars.

Continue reading “The big idea: are we about to discover a new force of nature?” »

Apr 17, 2024

Quantum computer creates particle that can remember its past

Posted by in categories: computing, particle physics, quantum physics

It may revolutionize how we approach quantum computing.

Apr 16, 2024

Quantum Systems: Potential Improvements and Future Developments

Posted by in categories: computing, particle physics, quantum physics

“Interfacing two key devices together is a crucial step forward in allowing quantum networking, and we are really excited to be the first team to have been able to demonstrate this,” said Dr. Sarah Thomas.


How close are we to making quantum computing a reality? This is what a recent study published in Science Advances hopes to address as an international team of researchers discuss recent progress in how quantum information is both stored and then transmitted over long distances using a quantum memory device, which scientists have attempted to develop for some time. This study holds the potential to help scientists better understand the processes responsible for not only making quantum computing a reality, but also enabling it to work as seamlessly as possible.

While traditional telecommunications technology uses “repeaters” to prevent the loss of information over long distances, quantum computing cannot use such technology since it will destroy quantum information along the way. While quantum computing uses photons (particles of light) to send information, storing the information using a quantum memory device for further dissemination has eluded researchers for some time. Therefore, to combat the problem of sending quantum information over long distances, two devices are required: the first will send the quantum information while the second will store them for later dissemination.

Continue reading “Quantum Systems: Potential Improvements and Future Developments” »

Apr 16, 2024

A single atom layer of gold—researchers create goldene

Posted by in categories: chemistry, particle physics

For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers from Linköping University, Sweden, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals. Their findings are published in the journal Nature Synthesis.

Scientists have long tried to make single-atom-thick sheets of gold but failed because the metal’s tendency to lump together. But researchers from Linköping University have now succeeded thanks to a hundred-year-old method used by Japanese smiths.

“If you make a material extremely thin, something extraordinary happens—as with graphene. The same thing happens with gold. As you know, gold is usually a metal, but if single-atom-layer thick, the gold can become a semiconductor instead,” says Shun Kashiwaya, researcher at the Materials Design Division at Linköping University.

Apr 14, 2024

The Quest to Map the Inside of the Proton

Posted by in category: particle physics

Long-anticipated experiments that use light to mimic gravity are revealing the distribution of energies, forces, and pressures inside a subatomic particle for the first time.

Apr 14, 2024

Photonic Quantum Computing: A Promising Future With Mature Technologies And Room-Temperature Operations

Posted by in categories: computing, particle physics, quantum physics

Photonic quantum computation, a type of quantum computation that uses light particles or photons, is divided into two main categories: discrete-variable (DV) and continuous-variable (CV) photonic quantum computation. Both have been realized experimentally and can be combined to overcome individual limitations. Photonic quantum computation is important as it can perform specific computational tasks more efficiently. It has several advantages, including the ability to observe and engineer quantum phenomena at room temperature, maintain coherence, and be engineered using mature technologies. The future of photonic quantum computing looks promising due to the significant progress in photonic technology.

Photonic quantum computation is a type of quantum computation that uses photons, particles of light, as the physical system for performing the computation. Photons are ideal for quantum systems because they operate at room temperature and photonic technologies are relatively mature. The field of photonic quantum computation is divided into two main categories: discrete-variable (DV) and continuous-variable (CV) photonic quantum computation.

In DV photonic quantum computation, quantum information is represented by one or more modal properties, such as polarization, that take on distinct values from a finite set. Quantum information is processed via operations on these modal properties and eventually measured using single photon detectors. On the other hand, in CV photonic quantum computation, quantum information is represented by properties of the electromagnetic field that take on any value in an interval, such as position. The electromagnetic field is transformed via Gaussian and non-Gaussian operations and then detected via homodyne detection.

Apr 14, 2024

Peter Higgs transformed what we know about the building blocks of the universe

Posted by in category: particle physics

Peter Higgs, who gave his name to the subatomic particle known as the Higgs boson, has died aged 94. He was always a modest man, especially when considering that he was one of the greats of particle physics—the area of science concerned with the building blocks of matter.

Apr 14, 2024

Exploring Quantum Teleportation: Qubit Transfer With Exotic Entangled States

Posted by in categories: particle physics, quantum physics

Quantum teleportation is a process by which quantum information can be transmitted from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location. This process is not to be confused with teleportation as depicted in science fiction, where matter is instantaneously transported from one location to another. Instead, quantum teleportation involves the transfer of quantum states between particles at different locations without any physical movement of the particles themselves.

In a recent study by Isiaka Aremua and Laure Gouba, the researchers explored the teleportation of a qubit using exotic entangled coherent states. A qubit, or quantum bit, is the basic unit of quantum information. It is a quantum system that can exist in any superposition of its two basis states. The researchers used a system of an electron moving on a plane in uniform external magnetic and electric fields to construct different classes of coherent states.

Coherent states are specific states of a quantum harmonic oscillator. They are often described as the quantum equivalent of classical states because they closely resemble the behavior of classical particles. In the context of quantum teleportation, coherent states are used to form entangled states, which are crucial for the teleportation process.

Page 85 of 599First8283848586878889Last