Menu

Blog

Archive for the ‘particle physics’ category: Page 64

May 15, 2024

Beta-decay measurements in mirror nuclei pin down the weak nuclear force

Posted by in category: particle physics

The Standard Model of Particle Physics is scientists’ best understanding of the forces that describe how subatomic particles interact. The Standard Model encompasses four forces: the strong nuclear force, the weak nuclear force, the electromagnetic force, and the gravitational force. All four forces govern the way our universe works. However, the weak nuclear force is exceptionally difficult to study as it is overshadowed by the much greater effects of the strong nuclear and electromagnetic forces.

May 15, 2024

Cooper Pairs Pair Up in a Kagome Metal

Posted by in categories: particle physics, quantum physics

In its superconducting state, an exotic metal harbors charge carriers that appear to have 4 and 6 times the charge of a single electron, suggesting the formation of Cooper-pair “molecules.”

A kagome crystal features two-dimensional atomic layers whose structure resembles a traditional Japanese basket weave called kagome. For several decades, the kagome crystals that attracted the most attention were insulating magnets. The geometric frustration inherent in their kagome structure could, it was hoped, engender a much-sought exotic state known as a quantum spin liquid. By contrast, the metallic side of the kagome family was more of a theoretical curiosity. That status changed in 2019 with the discovery of exotic electronic behavior—Dirac fermions and flat bands—in the kagome metal FeSn [1]. A bigger surprise followed a year later when superconductivity was observed in the kagome metal cesium vanadium antimonide (CsV3Sb5, or CVS for short) [2].

May 15, 2024

Using AI to speed up and improve the most computationally-intensive aspects of plasma physics in fusion

Posted by in categories: particle physics, robotics/AI

By Rachel Kremen, Princeton Plasma Physics Laboratory

The intricate dance of atoms fusing and releasing energy has fascinated scientists for decades. Now, human ingenuity and artificial intelligence are coming together at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) to solve one of humankind’s most pressing issues: generating clean, reliable energy from fusing plasma.

May 14, 2024

Scientists create an ‘optical conveyor belt’ for quasiparticles

Posted by in categories: particle physics, quantum physics

An “optical conveyor belt” that can move polaritons—a type of light-matter hybrid particle—in semiconductor-based microcavities.


This asymmetric response of the confined polaritons breaks , driving non-reciprocity and the formation of a topological .

Photonic states with topological properties can be used in advanced opto-electronic devices where topology might greatly improve the performance of optical devices, circuits, and networks, such as by reducing noise and lasing threshold powers, and dissipationless optical waveguiding.

Continue reading “Scientists create an ‘optical conveyor belt’ for quasiparticles” »

May 14, 2024

Atoms squished closer together than ever before, revealing seemingly impossible quantum effects

Posted by in categories: particle physics, quantum physics

Using a clever laser technique, scientists have squished pairs of atoms closer together than ever before, revealing some truly mind-boggling quantum effects.

May 14, 2024

Quantum time dilation in a gravitational field

Posted by in categories: particle physics, quantum physics

Jerzy Paczos, Kacper Dębski, Piotr T. Grochowski, Alexander R. H. Smith, and Andrzej Dragan, Quantum 8, 1338 (2024). According to relativity, the reading of an ideal clock is interpreted as the elapsed proper time along its classical trajectory through spacetime. In contrast, quantum theory allows the association of many simultaneous trajectories with a single quantum clock, each weighted appropriately. Here, we investigate how the superposition principle affects the gravitational time dilation observed by a simple clock – a decaying two-level atom. Placing such an atom in a superposition of positions enables us to analyze a quantum contribution to a classical time dilation manifest in spontaneous emission. In particular, we show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets, which gives rise to a quantum gravitational time dilation effect. We demonstrate that this nonclassical effect also manifests in a fractional frequency shift of the internal energy of the atom that is within the resolution of current atomic clocks. In addition, we show the effect of spatial coherence on the atom’s emission spectrum.

May 14, 2024

Electron vortices in graphene detected for the first time

Posted by in categories: materials, particle physics

When an ordinary electrical conductor—such as a metal wire—is connected to a battery, the electrons in the conductor are accelerated by the electric field created by the battery. While moving, electrons frequently collide with impurity atoms or vacancies in the crystal lattice of the wire, and convert part of their motional energy into lattice vibrations. The energy lost in this process is converted into heat that can be felt, for example, by touching an incandescent light bulb.

May 12, 2024

Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works

Posted by in categories: particle physics, sustainability

Researchers have developed a revolutionary material that can help eliminate microplastics, one of the most pervasive artificial contaminants in nature, from our waterways.

Scientists at the Indian Institute of Science have created a sustainable hydrogel — a polymer-based material that can adapt its structure to its environment even after absorbing water — with a “unique intertwined polymer network” that binds the microplastics and breaks them down using UV light, the institute summarized on its website.

Continue reading “Scientists develop breakthrough gel material that could remove one of the most common pollutants — here’s how it works” »

May 12, 2024

Tags: Compact Quantum Light Processing — A leap forward in optical quantum computing, optical quantum computing, spatial encoding

Posted by in categories: computing, particle physics, quantum physics

An international collaboration of researchers, led by Philip Walther at University of Vienna, have achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work published in the journal Science Advances represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Interference among photons, a fundamental phenomenon in quantum optics, serves as a cornerstone of optical quantum computing.

It involves harnessing the properties of light, such as its wave-particle duality, to induce interference patterns, enabling the encoding and processing of quantum information.

May 12, 2024

What you need to know about tonight’s rare appearance of the northern lights

Posted by in category: particle physics

Plasma, particles and energy released from the Sun on Thursday are heading for Earth and they could produce a light show in the sky visible into the Deep South.

Page 64 of 590First6162636465666768Last