Menu

Blog

Archive for the ‘particle physics’ category: Page 552

Feb 12, 2016

Toyota’s weird, bright green Prius uses science to stay cooler in the sun

Posted by in categories: economics, particle physics, science, transportation

The Prius is an intentionally odd-looking car that gets odder with every generation; I’m pretty sure even ardent defenders of Toyota’s flagship hybrid could agree with me on that. So why not throw an equally odd paint color on top?

What you’re looking at here is the new Prius in “Thermo-Tect Lime Green,” which is more than your average upsettingly loud paint color. Toyota says that by removing the carbon black particles found in most paint and replacing them with titanium oxide, it has significantly increased the vehicle’s solar reflectivity — in other words, the car heats up less, which lessens the need for air conditioning, which in turn improves fuel economy. And fuel economy, of course, is what the Prius is all about.

White paint also does a good job of keeping the sun’s heat at bay, but Toyota actually says that its Thermo-Tect paint outperformed white in a two-hour summer test outdoors. Basically, this technology means that you might be able to get the color of your choice on your next car and still reduce your AC use. Granted, lime green may not be your first choice, but there doesn’t seem to be anything stopping Toyota from rolling it out to other colors as well.

Read more

Feb 12, 2016

Harvard John A. Paulson School of Engineering and Applied Sciences

Posted by in categories: electronics, materials, particle physics

Graphene is going to change the world — or so we’ve been told.

Since its discovery a decade ago, scientists and tech gurus have hailed graphene as the wonder material that could replace silicon in electronics, increase the efficiency of batteries, the durability and conductivity of touch screens and pave the way for cheap thermal electric energy, among many other things.

Continue reading “Harvard John A. Paulson School of Engineering and Applied Sciences” »

Feb 11, 2016

Large Hadron Collidor Finds Particles That Defy The Standard Model Of Physics

Posted by in category: particle physics

An international group of scientists, with the help of CERN’s Large Hadron Collider (LHC), have found proof of something physicists have spent decades expecting for, subatomic particles acting in a way that challenges the Standard Model. By using the LHC, scientists observed conditions that violate the standard rules of particle physics. The group of physicists looked at data gathered from the LHC’s first run from year 2011–2012, a run made famed for the discovery of the Higgs boson, and found the proof they were looking for: Leptons disobeying the Standard Model. Leptons are a group of subatomic particles consist of of three different variations: the tau, the electron, and the muon. Electrons are very stable, however both the tau and muon decay very fast.

Image credit: Michael Taylor/Shutterstock.

Read more

Feb 11, 2016

How to Build a Quantum Computer

Posted by in categories: computing, particle physics, quantum physics

Quantum Entanglement “Fluffy Bunny Style”.


UVM physicist wins NSF CAREER grant to study entanglement 02-08-2016 By Joshua E. Brown Two different ways in which atoms can be quantum entangled. Left: spatial entanglement where atoms in two separated regions share quantum information. Right: particle entanglement for identical atoms (colored here for clarity) due to quantum statistics and interactions.

Read more

Feb 11, 2016

The First Image Ever of a Hydrogen Atom’s Orbital Structure

Posted by in categories: information science, particle physics, quantum physics

What you’re looking at is the first direct observation of an atom’s electron orbitalan atom’s actual wave function! To capture the image, researchers utilized a new quantum microscope — an incredible new device that literally allows scientists to gaze into the quantum realm.

An orbital structure is the space in an atom that’s occupied by an electron. But when describing these super-microscopic properties of matter, scientists have had to rely on wave functions — a mathematical way of describing the fuzzy quantum states of particles, namely how they behave in both space and time. Typically, quantum physicists use formulas like the Schrödinger equation to describe these states, often coming up with complex numbers and fancy graphs.

Up until this point, scientists have never been able to actually observe the wave function. Trying to catch a glimpse of an atom’s exact position or the momentum of its lone electron has been like trying to catch a swarm of flies with one hand; direct observations have this nasty way of disrupting quantum coherence. What’s been required to capture a full quantum state is a tool that can statistically average many measurements over time.

Read more

Feb 10, 2016

Tachyon physics with trapped ions

Posted by in categories: particle physics, quantum physics

It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. There has not been any experimental evidence for tachyons occurring naturally. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion correlation in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations of realistic ion systems and show that our scheme is feasible with current technology.

Figure Figure Figure Figure Figure

Read more

Feb 10, 2016

Physicists say they’ve finally confirmed the existence of a ‘four neutron-no proton’ particle

Posted by in category: particle physics

Physicists have found the most convincing signs of a tetraneutron — a four neutron-no proton particle — to date, adding weight to the possibility that the hypothetical particle really does exist. According to theory, this highly elusive particle cluster is impossible, because of how unstable lone neutrons are, but scientists in Japan say they’ve spotted its signature during recent experiments.

While the results need to be replicated independently before we can truly say the fabled tetraneutron exists, if other teams can confirm its existence, we’re going to have to make some serious changes to current understanding of nuclear forces. “It would be something of a sensation,” nuclear theorist Peter Schuck from France’s National Centre for Scientific Research, who wasn’t involved in the discovery, told Science News.

Physicists have been searching for the tetraneutron for decades, and while this 1965 paper concluded that no evidence could be found and “the existence of tetraneutrons is most unlikely”, four separate papers have since reported experimental observations of the particle.

Read more

Feb 8, 2016

Nanoscale cavity strongly links quantum particles

Posted by in categories: nanotechnology, particle physics, quantum physics

Very nice; another article on photonic crystal.


Scientists have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future.

Read more

Feb 8, 2016

It seems life really does have a vital spark: quantum mechanics

Posted by in categories: materials, particle physics, quantum physics

We all have “Quantum Spark”.


For centuries philosophers have grappled with the question of what makes life, and thanks to the science of quantum mechanics we might just have the answer, writes Johnjoe McFadden.

What is life? Why is the stuff of life — flesh — so different from inanimate material? Does life obey the same laws as the inanimate world? And what happens when we die?

Continue reading “It seems life really does have a vital spark: quantum mechanics” »

Feb 7, 2016

Macroscopic quantum entanglement achieved at room temperature

Posted by in categories: computing, particle physics, quantum physics

In quantum physics, the creation of a state of entanglement in particles any larger and more complex than photons usually requires temperatures close to absolute zero and the application of enormously powerful magnetic fields to achieve. Now scientists working at the University of Chicago (UChicago) and the Argonne National Laboratory claim to have created this entangled state at room temperature on a semiconductor chip, using atomic nuclei and the application of relatively small magnetic fields.

When two particles, such as photons, are entangled – that is, when they interact physically and are then forcibly separated – the spin direction imparted to each is directly opposite to the other. However, when one of the entangled particles has its spin direction measured, the other particle will immediately display the reverse spin direction, no matter how great a distance they are apart. This is the “spooky action at a distance” phenomenon (as Albert Einstein put it) that has already seen the rise of applications once considered science fiction, such as ultra-safe cryptography and a new realm of quantum computing.

Ordinarily, quantum entanglement is a rarely observed occurence in the natural world, as particles coupled in this way first need to be in a highly ordered state before they can be entangled. In essence, this is because thermodynamic entropy dictates that a general chaos of particles is the standard state of things at the atomic level and makes such alignments exceedingly rare. Going up a scale to the macro level, and the sheer number of particles involved makes entanglement an exceptionally difficult state to achieve.

Read more