Menu

Blog

Archive for the ‘particle physics’ category: Page 365

Jan 30, 2021

Physicists Observe Fleeting ‘Polaron’ Quasiparticles For The First Time

Posted by in categories: nanotechnology, particle physics

Polarons are important nanoscale phenomena: a transient configuration between electrons and atoms (known as quasiparticles) that exist for only trillionths of a second.

Jan 30, 2021

Female physicist invents new fusion to take the first humans to Mars

Posted by in categories: particle physics, space travel

Dr. Fatima Ebrahimi designed a fusion rocket that uses magnetic fields to shoot plasma particles from a craft, which could take humans to Mars 10 times faster than current devices.

Jan 29, 2021

Record-Breaking Source for Single Photons Developed That Can Produce Billions of Quantum Particles per Second

Posted by in categories: particle physics, quantum physics

Researchers at the University of Basel and Ruhr University Bochum have developed a source of single photons that can produce billions of these quantum particles per second. With its record-breaking efficiency, the photon source represents a new and powerful building-block for quantum technologies.

Jan 28, 2021

Physicists develop record-breaking source for single photons

Posted by in categories: particle physics, quantum physics

Researchers at the University of Basel and Ruhr University Bochum have developed a source of single photons that can produce billions of these quantum particles per second. With its record-breaking efficiency, the photon source represents a new and powerful building-block for quantum technologies.

Jan 28, 2021

New Rocket Thruster Concept Exploits the Mechanism Behind Solar Flares

Posted by in categories: particle physics, space travel

A new type of rocket thruster that could take humankind to Mars and beyond has been proposed by a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL).

The device would apply magnetic fields to cause particles of plasma (link is external), electrically charged gas also known as the fourth state of matter, to shoot out the back of a rocket and, because of the conservation of momentum, propel the craft forward. Current space-proven plasma thrusters use electric fields to propel the particles.

The new concept would accelerate the particles using magnetic reconnection, a process found throughout the universe, including the surface of the sun, in which magnetic field lines converge, suddenly separate, and then join together again, producing lots of energy. Reconnection also occurs inside doughnut-shaped fusion (link is external) devices known as tokamaks (link is external).

Jan 28, 2021

BASE Antimatter Experiment opens up new possibilities in the search for cold dark matter

Posted by in categories: cosmology, particle physics

BASE opens up new possibilities in the search for cold dark matter.

The Baryon Antibaryon Symmetry Experiment (BASE) at CERN’s Antimatter Factory has set new limits on how easily axion-like particles in a narrow mass range around 2.97 neV can turn into photons, the particles of light. BASE’s new result, published by Physical Review Letters, describes this pioneering method and opens up new experimental possibilities in the search for cold dark matter.

Continue reading “BASE Antimatter Experiment opens up new possibilities in the search for cold dark matter” »

Jan 26, 2021

The ‘X17’ particle: Scientists may have discovered the fifth force of nature

Posted by in categories: cosmology, particle physics

A new paper suggests that the mysterious X17 subatomic particle is indicative of a fifth force of nature.

Jan 26, 2021

Researchers guide a single ion through a Bose-Einstein condensate

Posted by in category: particle physics

Transport processes are ubiquitous in nature, but still raise many questions. The research team around Florian Meinert from the Fifth Institute of Physics at the University of Stuttgart has now developed a new method to observe a single charged particle on its path through a dense cloud of ultracold atoms. The results were published in Physical Review Letters and are further reported in a Viewpoint column in the journal Physics.

Meinert’s team used a Bose-Einstein condensate (BEC) for their experiments. This exotic state of matter consists of a dense cloud of ultracold . By means of sophisticated laser excitation, the researchers created a single Rydberg atom within the gas. In this giant atom, the electron is a thousand times further away from the nucleus than in the ground state and thus only very weakly bound to the core. With a specially designed sequence of electric field pulses, the researchers snatched the electron away from the atom. The formerly neutral atom turned into a positively charged ion that remained nearly at rest despite the process of detaching the electron.

In the next step, the researchers used precise electric fields to pull the ion in a controlled way through the dense cloud of atoms in the BEC. The ion picked up speed in the electric field, collided on its way with other atoms, slowed down and was accelerated again by the electric field. The interplay between acceleration and deceleration by collisions led to a constant motion of the ion through the BEC.

Jan 25, 2021

Physicists succeed in filming phase transition with extremely high spatial and temporal resolution

Posted by in categories: chemistry, nanotechnology, particle physics

Laser beams can be used to change the properties of materials in an extremely precise way. This principle is already widely used in technologies such as rewritable DVDs. However, the underlying processes generally take place at such unimaginably fast speeds and at such a small scale that they have so far eluded direct observation. Researchers at the University of Göttingen and the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen have now managed to film, for the first time, the laser transformation of a crystal structure with nanometre resolution and in slow motion in an electron microscope. The results have been published in the journal Science.

The team, which includes Thomas Danz and Professor Claus Ropers, took advantage of an unusual property of a material made up of atomically thin layers of sulfur and tantalum atoms. At , its is distorted into tiny wavelike structures—a “charge-density wave” is formed. At higher temperatures, a phase transition occurs in which the original microscopic waves suddenly disappear. The electrical conductivity also changes drastically, an interesting effect for nano-electronics.

In their experiments, the researchers induced this phase transition with short laser pulses and recorded a film of the charge-density wave reaction. “What we observe is the rapid formation and growth of tiny regions where the material was switched to the next phase,” explains first author Thomas Danz from Göttingen University. “The ultrafast transmission developed in Göttingen offers the highest time resolution for such imaging in the world today.” The special feature of the experiment lies in a newly developed imaging technique, which is particularly sensitive to the specific changes observed in this phase transition. The Göttingen physicists use it to take images that are composed exclusively of electrons that have been scattered by the crystal’s waviness.

Jan 25, 2021

Adding or subtracting single quanta of sound

Posted by in categories: particle physics, quantum physics

Researchers perform experiments that can add or subtract a single quantum of sound—with surprising results when applied to noisy sound fields.

Quantum mechanics tells us that physical objects can have both wave and particle properties. For instance, a single particle—or quantum—of is known as a photon, and, in a similar fashion, a single quantum of sound is known as a phonon, which can be thought of as the smallest unit of sound energy.

A team of researchers spanning Imperial College London, University of Oxford, the Niels Bohr Institute, University of Bath, and the Australian National University have performed an experiment that can add or subtract a single phonon to a high-frequency sound field using interactions with .