Menu

Blog

Archive for the ‘particle physics’ category: Page 2

Dec 30, 2024

Basic Machine learning and it’s application in solid state physics: An approach to identify the crystalline structure of solids

Posted by in categories: chemistry, particle physics, robotics/AI

All solids have a crystal structure that shows the spatial arrangement of atoms, ions or molecules in the lattice. These crystal structures are often determined by a method known as X-ray diffraction technique (XRD).

These crystal structures play an import role in determining many physical properties such as the electronic band structure, cleavage and explains many of their physical and chemical properties.

This article aims to discuss an approach to identify these structures by various machine learning and deep learning methods. It demonstrates how supervised machine learning and deep learning approaches and help in determining various crystal structures of solids.

Dec 29, 2024

Zero Point Energy Explained: Unlocking the Quantum Vacuum

Posted by in categories: climatology, nanotechnology, particle physics, quantum physics, sustainability

The 21st century faces an unprecedented energy challenge that demands innovative solutions. This video explores Zero Point Energy (ZPE), a groundbreaking concept rooted in quantum mechanics that promises limitless, clean, and sustainable power. Learn how the quantum vacuum—long considered empty—is teeming with virtual particles and untapped energy potential. From understanding the Casimir effect to leveraging advanced technologies like fractal energy collectors and quantum batteries, this video details how ZPE could revolutionize industries, mitigate climate change, and empower underserved communities. Dive into the science, challenges, and global implications of a ZPE-powered future.

#ZeroPointEnergy #CleanEnergy #QuantumVacuum #Sustainability #EnergyInnovation #ZPE #QuantumMechanics #RenewableEnergy #GreenTech #CasimirEffect #QuantumEnergy #EnergySustainability #ClimateSolutions #FractalEnergy #QuantumBatteries #AdvancedTechnology #LimitlessEnergy #Nanotechnology #FutureOfEnergy #CleanPower

Dec 29, 2024

Quantum science and technology: highlights of 2024

Posted by in categories: nanotechnology, particle physics, quantum physics, science

With so much fascinating research going on in quantum science and technology, it’s hard to pick just a handful of highlights. Fun, but hard. Research on entanglement-based imaging and quantum error correction both appear in Physics World’s list of 2024’s top 10 breakthroughs, but beyond that, here are a few other achievements worth remembering as we head into 2025 – the International Year of Quantum Science and Technology.

Quantum sensing

In July, physicists at Germany’s Forschungszentrum Jülich and Korea’s IBS Center for Quantum Nanoscience (QNS) reported that they had fabricated a quantum sensor that can detect the electric and magnetic fields of individual atoms. The sensor consists of a molecule containing an unpaired electron (a molecular spin) that the physicists attached to the tip of a scanning-tunnelling microscope. They then used it to measure the magnetic and electric dipole fields emanating from a single iron atom and a silver dimer on a gold substrate.

Dec 29, 2024

Breaking Quantum Boundaries: Atoms Defy Synchronization in Free Space

Posted by in categories: particle physics, quantum physics

Superradiance in optical cavities involves atoms emitting light collectively when interacting with cavity photons, a phenomenon not yet observed in free space due to synchronization challenges.

Researchers have used theoretical simulations to probe these effects under various conditions, revealing significant differences in behavior between cavity and free-space systems.

Superradiance in Optical Cavities.

Dec 29, 2024

Magic Particles: The Large Hadron Collider’s Quantum Computing Breakthrough

Posted by in categories: computing, particle physics, quantum physics

Physicists uncovered a fascinating link between the Large Hadron Collider and quantum computing. They found that top quarks produced at the LHC exhibit a property called “magic,” essential for quantum computation.

This discovery could revolutionize our understanding of quantum mechanics and its applications, bridging the gap between quantum theory and particle physics.

Quantum Computing and the Power of “Magic”

Dec 28, 2024

Physicists Have Found a Radical New Way to Entangle Light And Sound

Posted by in categories: particle physics, quantum physics

The quantum entanglement of particles is now an established art. You take two or more unmeasured particles and correlate them in such a way that their properties blur and mirror each other. Measure one and the other’s corresponding properties lock into place, instantaneously, even when separated by a wide distance.

In new research, physicists have theorized a bold way to change it up by entangling two particles of very different kinds – a unit of light, or a photon, with a phonon, the quantum equivalent of a wave of sound.

Physicists Changlong Zhu, Claudiu Genes, and Birgit Stiller of the Max Planck Institute for the Science of Light in Germany have called their proposed new system optoacoustic entanglement.

Dec 28, 2024

Scientists take a closer look at rare particles called hypernuclei

Posted by in categories: particle physics, space

Scientists use cutting-edge techniques to study rare atomic systems called hypernuclei shedding light on subatomic forces and neutron stars.

Scientists have made an important discovery in the world of particle physics by exploring hypernuclei — rare, short-lived atomic systems that include mysterious particles known as hyperons. Unlike protons and neutrons composed of “up” and “down” quarks, which make up the nuclei of ordinary atoms, hyperons contain at least one “strange” quark. These unusual particles could help unravel mysteries not only about the interactions between subatomic particles but also about the extreme conditions inside neutron stars.

“It is extremely important to understand what happens when a nucleus becomes a hypernucleus, which means when one nucleon is replaced by a hyperon,” Jean-Marc Richard, a professor at the University of Lyon, who was not involved in the study, said in an email.

Dec 28, 2024

Numerical simulations show how the classical world might emerge from the many-worlds universes of quantum mechanics

Posted by in categories: business, education, information science, particle physics, quantum physics

Students learning quantum mechanics are taught the Schrodinger equation and how to solve it to obtain a wave function. But a crucial step is skipped because it has puzzled scientists since the earliest days—how does the real, classical world emerge from, often, a large number of solutions for the wave functions?

Each of these wave functions has its individual shape and associated , but how does the “collapse” into what we see as the classical world—atoms, cats and the pool noodles floating in the tepid swimming pool of a seedy hotel in Las Vegas hosting a convention of hungover businessmen trying to sell the world a better mousetrap?

At a high level, this is handled by the “Born rule”—the postulate that the probability density for finding an object at a particular location is proportional to the square of the wave function at that position.

Dec 28, 2024

Quantum Leap: Scientists Successfully Control New Energy Range States

Posted by in categories: particle physics, quantum physics

An international team of scientists, led by Dr. Lukas Bruder, a junior research group leader at the University of Freiburg’s Institute of Physics, has successfully created and controlled hybrid electron-photon quantum states in helium atoms.

The team accomplished this by generating specially designed, highly intense extreme ultraviolet light pulses using the FERMI free electron laser in Trieste, Italy. By employing an innovative laser pulse-shaping technique, they were able to precisely control these hybrid quantum states. The groundbreaking findings have been published in Nature.

Dec 28, 2024

Spintronics memory innovation: A new perpendicular magnetized film

Posted by in categories: computing, particle physics

Long gone are the days where all our data could fit on a two-megabyte floppy disk. In today’s information-based society, the increasing volume of information being handled demands that we switch to memory options with the lowest power consumption and highest capacity possible.

Magnetoresistive Random Access Memory (MRAM) is part of the next generation of storage devices expected to meet these needs. Researchers at the Advanced Institute for Materials Research (WPI-AIMR) investigated a cobalt-manganese-iron alloy thin film that demonstrates a high perpendicular magnetic anisotropy (PMA)—key aspects for fabricating MRAM devices using spintronics.

The findings were published in Science and Technology of Advanced Materials on November 13, 2024.

Page 2 of 60912345678Last