Menu

Blog

Archive for the ‘particle physics’ category: Page 103

Feb 26, 2024

Physicists discover a quantum state with a new type of emergent particles: Six-flux composite fermions

Posted by in categories: particle physics, quantum physics

If the fractional quantum Hall regime were a series of highways, these highways would have either two or four lanes. The flow of the two-flux or four-flux composite fermions, like automobiles in this two-to four-flux composite fermion traffic scenario, naturally explains the more than 90 fractional quantum Hall states that form in a large variety of host materials. Physicists at Purdue University have recently discovered, though, that fractional quantum Hall regimes are not limited to two-flux or four-flux and have discovered the existence of a new type of emergent particle, which they are calling six-flux composite fermion.

They have recently published their groundbreaking findings in Nature Communications.

Gabor Csathy, professor and head of the Department of Physics and Astronomy at the Purdue University College of Science, along with Ph.D. students Haoyun Huang, Waseem Hussain, and recent Ph.D. graduate Sean Myers, led this discovery from the West Lafayette campus of Purdue. Csathy credits lead author Huang as having conceived and led the measurements, and having written a large part of the manuscript. All the ultra-low-temperature measurements were completed in Csathy’s Physics Building lab. His lab conducts research on strongly correlated electron , sometimes referred to as topological electron physics.

Feb 26, 2024

Giant ‘bubble’ in space could be source of powerful cosmic rays

Posted by in categories: particle physics, space

Scientists have identified a region in the Milky Way capable of accelerating particles to super-high energy levels.

Feb 26, 2024

Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts

Posted by in category: particle physics

Modulating interfacial electric fields provides a means to control electrocatalyst activity for a broad range of reactions. Here the authors show that this can be achieved by tuning the nanocurvature of carbon supported single-atom catalysts.

Feb 26, 2024

Strange Phase of Matter That Only Existed in Theory Turns Out to Be Real

Posted by in categories: materials, particle physics

A strange phase of matter that previously existed purely in the realm of theory has finally been detected in a real material.

It’s known as the Bragg glass phase – a strange, seemingly paradoxical arrangement of atoms in a glass material where the particles are nearly as ordered as those in a perfect crystal. Scientists weren’t even sure Bragg glass existed, but there it was, hiding in an alloy of palladium inserted between layers of terbium and tellurium (PdxErTe3).

The discovery, led by physicist Krishnanand Mallayya of Cornell University and published in Nature Physics, not only sheds light on the way materials can behave but demonstrates a powerful new set of techniques for probing the atomic structures of exotic materials.

Feb 26, 2024

Quantum Computing Breakthrough: New Fusion of Materials Has All the Components Required for a Unique Type of Superconductivity

Posted by in categories: computing, particle physics, quantum physics

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing. The new combination of materials, created by a team led by researchers at Penn State, could also provide a platform to explore physical behaviors similar to those of mysterious, theoretical particles known as chiral Majoranas, which could be another promising component for quantum computing.

The new study was recently published in the journal Science. The work describes how the researchers combined the two magnetic materials in what they called a critical step toward realizing the emergent interfacial superconductivity, which they are currently working toward.

Feb 26, 2024

Study reveals Eco-friendly way to Generate Power from Waste Wood

Posted by in categories: particle physics, sustainability

A new study by researchers at University of Limerick in Ireland has revealed a sustainable method of efficiently converting waste heat into electricity using Irish wood products, while minimizing costs and environmental impact.

The study, led by researchers at UL in collaboration with colleagues at the University of Valencia, has demonstrated a method of generating electricity using low-grade heat recovered from lignin-derived membranes.

Lignin, typically overlooked, is a sustainable byproduct derived from wood in paper and pulp production. The study shows that these membranes can convert waste heat into electricity by utilizing the movement of charged atoms (ions) within the material.

Feb 25, 2024

Scientists use levitating magnets to understand quantum gravity

Posted by in categories: particle physics, quantum physics

Scientists have identified a subtle gravitational force acting on a minuscule particle through an innovative approach.

In the quest to unravel the mysterious forces of the universe, scientists have achieved a major feat.

Feb 25, 2024

Scientists Achieve an Incredible Feat: Freezing Water’s Electrons in Time

Posted by in category: particle physics

Here’s what it takes to pause the perpetual motion of particles.

Feb 24, 2024

Nonequilibrium solvent response force: What happens if you push a Brownian particle

Posted by in categories: information science, particle physics

Forces cannot simply be added to the Langevin equation. Momentum transfer from the Brownian particle on the solvent always produces an additional nonequilibrium solvent response force that has highly nontrivial statistical properties.

Feb 24, 2024

A new phase of matter: Physicists achieve first demonstration of non-Abelian anyons in a quantum processor

Posted by in categories: particle physics, quantum physics

Our physical, 3D world consists of just two types of particles: bosons, which include light and the famous Higgs boson; and fermions—the protons, neutrons, and electrons that comprise all the “stuff,” present company included.

Theoretical physicists like Ashvin Vishwanath, Harvard’s George Vasmer Leverett Professor of Physics, don’t like to limit themselves to just our world, though. In a 2D setting, for instance, all kinds of new particles and states of matter would become possible.

Vishwanath’s team used a powerful machine called a to make, for the first time, a brand-new phase of matter called non-Abelian topological order. Previously recognized in theory only, the team demonstrated synthesis and control of exotic particles called non-Abelian anyons, which are neither bosons nor fermions, but something in between.