Menu

Blog

Archive for the ‘nuclear energy’ category: Page 80

Dec 28, 2020

South Korea’s ‘Artificial Sun’ Just Set a New World Record For High-Temperature Plasma

Posted by in categories: nuclear energy, space

Scientists have just set a new world record for high-temperature sustained plasma with the Korea Superconducting Tokamak Advanced Research (KSTAR) device, reaching an ion temperature of above 100 million degrees Celsius (180 million degrees Fahrenheit) for a period of 20 seconds.

Known as Korea’s “artificial sun”, the KSTAR uses magnetic fields to generate and stabilise ultra-hot plasma, with the ultimate aim of making nuclear fusion power a reality – a potentially unlimited source of clean energy that could transform the way we power our lives, if we can get it to work as intended.

Before this point, 100 million degrees hadn’t been breached for more than 10 seconds, so it’s a substantial improvement on previous efforts – even if there’s still a long way to go before we can completely ditch other sources of energy. At this point, nuclear fusion power remains a possibility, not a certainty.

Dec 26, 2020

Tiny Nuclear Reactors Are the Future of Energy

Posted by in category: nuclear energy

Nuclear energy accounts for nearly 20% of electricity generated in the US, more than wind, solar and hydro combined. But now, new nuclear reactor designs could bring far more widespread use and public acceptance of this powerful form of energy.

Check out VICE News for more: http://vicenews.com.

Continue reading “Tiny Nuclear Reactors Are the Future of Energy” »

Dec 26, 2020

Korean Artificial Sun – KSTAR Fusion Reactor – Sets New World Record

Posted by in category: nuclear energy

KSTAR sets the new world record of 20-sec-long operation at 100 million °C. Aims to continuously operate high-temperature plasma over the 100-million-degree for 300 seconds by 2025.

The Korea Superconducting Tokamak Advanced Research (KSTAR), a superconducting fusion device also known as the Korean artificial sun, set the new world record as it succeeded in maintaining the high temperature plasma for 20 seconds with an ion temperature over 100 million degrees.

On November 24, 2020, the KSTAR Research Center at the Korea Institute of Fusion Energy (KEF) announced that in a joint research with the Seoul National University (SNU) and Columbia University of the United States, it succeeded in continuous operation of plasma for 20 seconds with an ion-temperature higher than 100 million degrees, which is one of the core conditions of nuclear fusion in the 2020 KSTAR Plasma Campaign.

Dec 25, 2020

Korean artificial sun sets the new world record of 20-sec-long operation at 100 million degrees

Posted by in category: nuclear energy

The Korea Superconducting Tokamak Advanced Research(KSTAR), a superconducting fusion device also known as the Korean artificial sun, set the new world record as it succeeded in maintaining the high temperature plasma for 20 seconds with an ion temperature over 100 million degrees.

Dec 25, 2020

Media release BWXT make significant progress towards producing life-saving isotope at Darlington

Posted by in categories: biotech/medical, nuclear energy

Peterborough, ON — Ontario Power Generation (OPG), its subsidiary Laurentis Energy Partners (Laurentis), BWXT ITG Canada Inc. and its affiliates (BWXT) are making significant progress toward the production of molybdenum-99 (Mo-99) at OPG’s Darlington Nuclear Generating Station. Mo-99 is a much-needed medical isotope used in over 40 million procedures a year to detect cancers and diagnose various medical conditions.

Over the past 24 months, a team of more than 100 personnel at BWXT and Laurentis designed specialized tooling at BWXT’s facility in Peterborough to enable the production of Mo-99 at Darlington. The manufacturing of this specialized tooling is currently underway at the same BWXT facility in Peterborough.

BWXT has also built a fabrication facility at its current location in Peterborough to produce Mo-99 components that will be delivered by the specialized tooling, which will be installed at Darlington. The tooling will deliver the molybdenum into the Darlington reactor for irradiation, which will enable Darlington to become the first commercial operating nuclear reactor to produce Mo-99.

Continue reading “Media release BWXT make significant progress towards producing life-saving isotope at Darlington” »

Dec 21, 2020

Inside JET: The world’s biggest nuclear fusion experiment | On Location

Posted by in categories: nuclear energy, sustainability

Inside these walls, scientists have been trying for decades to create an unlimited source of energy, nuclear fusion. Welcome to JET, the world’s biggest nuclear fusion experiment.

Scientists argue that fusion could replace coal gas and nuclear fission in the energy mix alongside renewable energy, which can prove to be unreliable. If we can learn to control it, nuclear fusion could change life as we know it. But that’s a big if.

Continue reading “Inside JET: The world’s biggest nuclear fusion experiment | On Location” »

Dec 17, 2020

Floating ‘mini-nukes’ could power countries by 2025, says startup

Posted by in category: nuclear energy

Danish company plans to fit ships with small nuclear reactors to send energy to developing countries.

Dec 15, 2020

A cool advance in thermoelectric conversion

Posted by in categories: engineering, nuclear energy, quantum physics

More than two-thirds of the energy used worldwide is ultimately ejected as “waste heat.” Within that reservoir of discarded energy lies a great and largely untapped opportunity, claim scientists in MIT’s Department of Nuclear Science and Engineering (NSE). As reported in a recent issue of Nature Communications, the MIT team—led by Assistant Professor Mingda Li, who heads NSE’s Quantum Matter Group—has achieved a breakthrough in thermoelectric generation, which offers a direct means of converting thermal energy, including waste heat, into electricity.

A , or difference, within a material such as a metal or semiconductor can, through a phenomenon known as the Seebeck effect, give rise to an that drives a current. “For many materials, the is too low to be useful,” explains NSE Research Scientist Fei Han. “Our goal is to find materials with conversion efficiencies high enough to make thermoelectric generation more practical.”

The efficiency of thermoelectric energy conversion is proportional to a material’s , electrical , and something called the “” squared; it is inversely proportional to the . Because efficiency goes up with temperature, most thermoelectric materials used today operate in the range of hundreds of degrees centigrade. “But in our lives, most of the stuff around us is at room temperature,” Han says. “That’s why we’re trying to discover new materials that work effectively at or below room temperature.”

Dec 14, 2020

Tiny Nuclear Reactors Yield a Huge Amount of Clean Hydrogen

Posted by in category: nuclear energy

They’re another welcome weapon in the fight against fossil fuels.


After getting bodied in the news cycle for a few months, small modular nuclear startup NuScale Power has an additional potential path to the diverse energy market. In a new evaluation run by the U.S. Department of Energy’s Idaho National Laboratory, NuScale’s nuclear module performed effective catalysis for hydrogen.

☢️You love nuclear. So do we. Let’s nerd out over nuclear together.

Continue reading “Tiny Nuclear Reactors Yield a Huge Amount of Clean Hydrogen” »

Dec 14, 2020

This New Nuclear Battery Could Power Deep Space Missions for Decades

Posted by in categories: nuclear energy, space

😃


A new method called lattice confinement fusion could be the compact, long-lasting energy source we’ve been searching for to power deep space missions 🤯 🚀.

Page 80 of 135First7778798081828384Last