Menu

Blog

Archive for the ‘nuclear energy’ category: Page 15

Mar 1, 2024

Is nuclear power the key to space exploration?

Posted by in categories: climatology, nuclear energy, space travel, sustainability

The Voyager 1 was launched in 1977. Almost 50 years later, it’s still going and sending back information, penetrating ever deeper into space. It can do that because it’s powered by nuclear energy.

Long a controversial energy source, nuclear has been experiencing renewed interest on Earth to power our fight against climate change. But behind the scenes, nuclear has also been facing a renaissance in space.

In July, the US National Aeronautics and Space Administration (NASA) and Defense Advanced Research Projects Agency (DARPA) jointly announced that they plan to launch a nuclear-propelled spacecraft by 2025 or 2026. The European Space Agency (ESA) in turn is funding a range of studies on the use of nuclear engines for space exploration. And last year, NASA awarded a contract to Westinghouse to develop a concept for a nuclear reactor to power a future moon base.

Feb 21, 2024

Scientists Claim AI Breakthrough to Generate Boundless Clean Fusion Energy

Posted by in categories: nuclear energy, robotics/AI

Princeton researchers report that a new AI model has solved one of the major roadblocks to generating fusion energy.

Feb 21, 2024

AI to forecast real-time plasma instabilities in nuclear fusion reactor

Posted by in categories: nuclear energy, robotics/AI

Fusion powers the Sun, and, by extension, makes life on Earth possible.


Researchers use AI to predict and prevent plasma instabilities in fusion reactors, averting reaction disruptions. Experiments show AI forecasts issues 300 milliseconds early, allowing real-time adjustments for stability.

Feb 21, 2024

Plasma scientists develop computer programs that could reduce the cost of microchips, stimulate manufacturing

Posted by in categories: computing, mobile phones, nuclear energy, transportation

Fashioned from the same element found in sand and covered by intricate patterns, microchips power smartphones, augment appliances and aid the operation of cars and airplanes.

Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are developing computer simulation codes that will outperform current simulation techniques and aid the production of microchips using plasma, the electrically charged state of matter also used in fusion research.

These codes could help increase the efficiency of the manufacturing process and potentially stimulate the renaissance of the chip industry in the United States.

Feb 20, 2024

Exclusive: India seeks $26 billion of private nuclear power investments

Posted by in categories: government, nuclear energy

India will invite private firms to invest about $26 billion in its nuclear energy sector to increase the amount of electricity from sources that don’t produce carbon dioxide emissions, two government sources told Reuters.

Feb 19, 2024

Efficient and Sustainable Transplutonium Isotope Production: A New Diagnostic Approach

Posted by in categories: computing, military, nuclear energy, space, sustainability

In this study, a novel rapid diagnostic method was developed for optimizing the production of transplutonium isotope through high flux reactor irradiation. The proposed method was based on the concept of “Single Energy Interval Value (SEIV)” and “Energy Spectrum Total Value (ESTV)”, which significantly improved the production efficiency of isotopes such as 252Cf (by 15.08 times), 244Cm (by 65.20 times), 242Cm (by 11.98 times), and 238Pu (by 7.41 times). As a promising alternative to the traditional Monte Carlo burnup calculation method, this method offers a more efficient approach to evaluate radiation schemes and optimize the design parameters. The research discovery provides a theoretical basis for further refining the analysis of transplutonium isotope production, leading to more efficient and sustainable production methods. Future studies could focus on the implementation of energy spectrum conversion technology to further improve the optimal energy spectrum.

The production of transplutonium isotope, which are essential in numerous fields such as military and space technology, remains inefficient despite being produced through irradiation in a high flux reactor. Past studies on the optimization of transplutonium isotope production through irradiation in a high flux reactor have been limited by the computational complexity of traditional methods such as Monte Carlo burnup calculation. These limitations have hindered the refinement of the evaluation, screening, and optimization of the irradiation schemes. Hence, this research aimed to develop a rapid diagnostic method for evaluating radiation schemes that can improve the production efficiency of isotopes such as 252Cf, 244Cm, 242Cm, and 238Pu. The outcome of the study showed great potential in advancing the production of transplutonium isotope, which have numerous applications in fields such as military, energy, and space technology.

Continue reading “Efficient and Sustainable Transplutonium Isotope Production: A New Diagnostic Approach” »

Feb 18, 2024

Astronomers investigate what causes bright flashes in space

Posted by in categories: nuclear energy, space

Some of the oddest cosmic phenomena are short but tremendously powerful bursts of radio waves, which, in a fraction of a second, can give off as much energy as the sun does in a year. Known as fast radio bursts, these incredibly bright flashes of energy are thought to be related to dying stars called magnetars. Now, using two separate telescopes, astronomers have observed one of these events just a few minutes before and after it occurred, giving the best look yet at what causes these strange events.

Astronomers used NASA’s NICER (Neutron Star Interior Composition Explorer) on the International Space Station and NuSTAR (Nuclear Spectroscopic Telescope Array) in low-Earth orbit to observe a magnetar called SGR 1935+2154. Magnetars are a type of neutron star, the dense core left behind after a star collapses and with an extremely strong magnetic field. In October 2022, this magnetar gave off one of these strange, fast radio bursts.

Feb 14, 2024

Timelapse of Future Technology 2 (Sci-Fi Documentary)

Posted by in categories: biotech/medical, education, information science, internet, nuclear energy, robotics/AI

This timelapse of future technology begins with 2 Starships, launched to resupply the International Space Station. But how far into the future do you want to go?

Tesla Bots will be sent to work on the Moon, and A.I. chat bots will guide people into dreams that they can control (lucid dreams). And what happens when humanity forms a deeper understanding of dark energy, worm holes, and black holes. What type of new technologies could this advanced knowledge develop? Could SpaceX launch 100 Artificial Intelligence Starships, spread across our Solar System and beyond into Interstellar space, working together to form a cosmic internet, creating the Encyclopedia of the Galaxy. Could Einstein’s equations lead to technologies in teleportation, and laboratory grown black holes.

Continue reading “Timelapse of Future Technology 2 (Sci-Fi Documentary)” »

Feb 10, 2024

Nuclear fusion lab sets record for most energy created with single reaction

Posted by in category: nuclear energy

Though we’re still a ways off from generating usable energy this way, the result shows promise for the field.

Feb 9, 2024

Faulty DNA disposal system found to cause inflammation

Posted by in categories: biotech/medical, genetics, life extension, nuclear energy

Cells in the human body contain power-generating mitochondria, each with their own mtDNA—a unique set of genetic instructions entirely separate from the cell’s nuclear DNA that mitochondria use to create life-giving energy. When mtDNA remains where it belongs (inside of mitochondria), it sustains both mitochondrial and cellular health—but when it goes where it doesn’t belong, it can initiate an immune response that promotes inflammation.

Now, Salk scientists and collaborators at UC San Diego have discovered a novel mechanism used to remove improperly functioning mtDNA from inside to outside the mitochondria. When this happens, the mtDNA gets flagged as foreign DNA and activates a normally used to promote to rid the cell of pathogens, like viruses.

The findings, published in Nature Cell Biology, offer many new targets for therapeutics to disrupt the inflammatory pathway and therefore mitigate inflammation during aging and diseases, like lupus or rheumatoid arthritis.

Page 15 of 134First1213141516171819Last