Menu

Blog

Archive for the ‘neuroscience’ category: Page 4

Dec 22, 2024

Up to 13% of Dementia Cases Could Be a Misdiagnosed Treatable Condition

Posted by in categories: health, neuroscience

As the global population ages, more of us face frightening cognitive decline, personally or in our loved ones. There are over 10 million new cases of dementia globally each year.

But a study published this year suggests up to 13 percent of people diagnosed with dementia in the US may have a misdiagnosis and are instead left struggling with a condition that can be treated.

“Health care providers [must be] made aware of this potential overlap between dementia and hepatic encephalopathy, which is treatable,” said Virginia Commonwealth University hepatologist Jasmohan Bajaj in July.

Dec 21, 2024

Neuroscience: Non-personalized content and ads are influenced by things like the content you’re currently viewing and your location (ad serving is based on general location)

Posted by in category: neuroscience

Personalized content and ads can also include things like video recommendations, a customized YouTube homepage, and tailored ads based on past activity, like the videos you watch and the things you search for on YouTube. We also use cookies and data to tailor the experience to be age-appropriate, if relevant.

Select “More options” to see additional information, including details about managing your privacy settings. You can also visit g.co/privacytools at any time.

Dec 21, 2024

Octopuses and their relatives are a new animal welfare frontier − here’s what scientists know about consciousness in these unique creatures

Posted by in categories: habitats, health, neuroscience

Considering what’s known about their brain structures, sensory systems and learning capacity, it appears that cephalopods as a group may be similar in intelligence to vertebrates as a group. Since many societies have animal welfare standards for mice, rats, chickens and other vertebrates, logic would suggest that there’s an equal case for regulations enforcing humane treatment of cephalopods.

Such rules generally specify that when a species is held in captivity, its housing conditions should support the animal’s welfare and natural behavior. This view has led some U.S. states to outlaw confined cages for egg-laying hens and crates too narrow for pregnant sows to turn around.

Continue reading “Octopuses and their relatives are a new animal welfare frontier − here’s what scientists know about consciousness in these unique creatures” »

Dec 21, 2024

You Can Warp Time, Stanford Professor Says

Posted by in categories: life extension, neuroscience

Time feels like it flies by or drags on depending on the intensity of your experiences. So, does that mean aging is merely a mindset?

Dec 21, 2024

Previously unknown genetic links provide insights into autism’s prevalence among males

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Penn Engineers have modified lipid nanoparticles (LNPs)—the revolutionary technology behind the COVID-19 mRNA vaccines—to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how —short strings of —can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Dec 21, 2024

The core language network separated from other networks during primate evolution

Posted by in categories: evolution, neuroscience

In their Review article earlier this year, Fedorenko, Ivanova & Regev (Fedorenko, E., Ivanova, A. A. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 25, 289–312 (2024))1 propose a functional separation between the core language network and other perceptual, motor and higher-level cognitive components of communication-related networks in the left hemisphere of the human brain. In the ‘Open questions and a way forward’1 section that ends their Review, the authors discuss the need for cross-species comparative research to disentangle how these brain networks came to support human language. Here, we suggest that the authors’ functional separation of a core language network and other components in the human brain is grounded in the evolution of two separate structural networks within primate brains.

Fedorenko and colleagues describe the core language network as left-lateralized, and involving the middle frontal gyrus (MFG), inferior frontal gyrus (IFG), superior temporal gyrus (STG) and middle temporal gyrus (MTG). Perceptual and motor systems for speech are defined as separate subsystems located in auditory cortex and speech perception areas in the STG and motor cortex and motor planning areas1, respectively. Importantly, these functionally defined key brain areas are known to be structurally connected via dorsally and ventrally located white-matter fibre tracts, which guarantee the information flow between areas. In humans, two separate dorsal pathways that provide structural connections have been identified for two distinct networks2,3 (Fig. 1).

Dec 20, 2024

Wireless antennas harness light to decode cellular communication signals

Posted by in categories: biotech/medical, neuroscience

Monitoring electrical signals in biological systems helps scientists understand how cells communicate, which can aid in the diagnosis and treatment of conditions like arrhythmia and Alzheimer’s.

But devices that record electrical signals in and other liquid environments often use wires to connect each electrode on the device to its respective amplifier. Because only so many wires can be connected to the device, this restricts the number of recording sites, limiting the information that can be collected from cells.

MIT researchers have now developed a biosensing technique that eliminates the need for wires. Instead, tiny, wireless antennas use light to detect minute electrical signals.

Dec 20, 2024

Can trauma be inherited through genes?

Posted by in categories: genetics, neuroscience

The field “touches on all the questions that humanity has asked since it was walking on this planet,” says Moshe Szyf, a professor of pharmacology at McGill University. “How much of our destiny is predetermined? How much of it do we control?”

For some people, the concept that we can carry a legacy of trauma makes sense because it validates their sense that they are more than the sum of their experiences.

“If you feel you have been affected by a very traumatic, difficult, life-altering experience that your mother or father has had, there’s something to that,” says Rachel Yehuda, professor of psychiatry and neuroscience of trauma at Mount Sinai in New York. Her research points to a small epigenetic “signal” that a life-altering experience “doesn’t just die with you,” she says. “It has a life of its own afterwards in some form.”

Dec 20, 2024

Reward-based Learning— Neuroscientists demonstrate Dopamine and Serotonin Work in Opposition to Shape Learning

Posted by in categories: chemistry, neuroscience

If you’ve heard of two of the brain’s chemical neurotransmitters, it’s probably dopamine and serotonin. Never mind that glutamate and GABA do most of the work—it’s the thrill of dopamine as the “pleasure chemical” and serotonin as a tender mood-stabilizer that attract all the headlines.

Of course, the headlines mostly get it wrong. Dopamine’s role in shaping behavior goes way beyond simple concepts like “pleasure” or even “reward”. And the fact that it takes weeks or months for serotonin-boosting SSRI antidepressants to work suggests that it’s not actually the immediate jump in serotonin levels that drum out the doldrums of depression, but some still-mysterious shift in downstream brain circuits.

A new study from Stanford’s Wu Tsai Neurosciences Institute reveals yet another new facet of these mood-managing molecules. The research, published November 25, 2024 in Nature, demonstrates for the first time exactly how dopamine and serotonin work together—or more precisely, in opposition—to shape our behavior.

Dec 20, 2024

Optimization algorithm improves safety of transcranial focused ultrasound treatments

Posted by in categories: information science, neuroscience

Algorithm finds the optimal transducer location to focus ultrasound through the skull onto a target in the brain.

Page 4 of 1,03212345678Last