Menu

Blog

Archive for the ‘nanotechnology’ category: Page 293

Oct 28, 2015

New silicon-based anode set to boost lifetime and capacity of lithium-ion batteries

Posted by in categories: energy, materials, nanotechnology

A new approach developed by researchers at the University of Waterloo could hold the key to greatly improving the performance of commercial lithium-ion batteries. The scientists have developed a new type of silicon anode that would be used in place of a conventional graphite anode, which they claim will lead to smaller, lighter and longer-lasting batteries for everything from personal devices to electric vehicles.

Graphite has served the lithium-ion battery world as material for negative electrodes well so far, but also presents something of a roadblock for improved capacity. This is due to the relatively small amount of energy it can store, which comes in at around 370 mAh/g (milliamp hours per gram). Silicon has become an increasingly popular substitute for battery researchers looking to up the ante, with a specific capacity of 4,200 mAh/g. However, it isn’t without its limitations either.

As silicon interacts with lithium inside the cell during each charge cycle, it expands and contracts by as much as as 300 percent. This immense swelling brings about cracks that diminish the battery’s performance over time, leading to short circuits and ultimately cell failure. Other recent attempts to overcome this problem have turned up battery designs that use sponge-like silicon anodes developed at the nanoscale, silicon nanowires measuring only a few microns long and ones that bring graphene and carbon nanotubes into the mix.

Read more

Oct 24, 2015

Nanotechnology offers new approach to increasing storage ability of dielectric capacitors

Posted by in categories: nanotechnology, time travel

Oct. 21, 2015, was the day that Doc Brown and Marty McFly landed in the future in their DeLorean, with time travel made possible by a “flux capacitor.”

Read more

Oct 20, 2015

Graphennas: The Wonder Compound Meets Nano-Scale Wireless Communications

Posted by in categories: materials, nanotechnology

Graphene antennas have promised big improvements for tiny wireless technologies. A new study prepares “graphennas” for actual testing and development.

Read more

Oct 19, 2015

To infinity and beyond: Light goes infinitely fast with new on-chip material

Posted by in categories: computing, materials, nanotechnology

Electrons are so 20th century. In the 21st century, photonic devices, which use light to transport large amounts of information quickly, will enhance or even replace the electronic devices that are ubiquitous in our lives today. But there’s a step needed before optical connections can be integrated into telecommunications systems and computers: researchers need to make it easier to manipulate light at the nanoscale.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have done just that, designing the first on-chip metamaterial with a refractive index of zero, meaning that the phase of can travel infinitely fast.

This new metamaterial was developed in the lab of Eric Mazur, the Balkanski Professor of Physics and Applied Physics and Area Dean for Applied Physics at SEAS, and is described in the journal Nature Photonics.

Read more

Oct 19, 2015

Graphene nano-coils are natural electromagnets

Posted by in categories: electronics, materials, nanotechnology

In the drive to miniaturize electronics, solenoids have become way too big, say Rice University scientists who discovered the essential component can be scaled down to nano-size with macro-scale performance.

The secret is in a spiral form of atom-thin graphene that, remarkably, can be found in nature, according to Rice theoretical physicist Boris Yakobson and his colleagues.

“Usually, we determine the characteristics for materials we think might be possible to make, but this time we’re looking at a configuration that already exists,” Yakobson said. “These spirals, or screw dislocations, form naturally in graphite during its growth, even in common coal.”

Continue reading “Graphene nano-coils are natural electromagnets” »

Oct 13, 2015

Nanoplasmonics makes the impossible possible

Posted by in category: nanotechnology

Researchers will take on a task that until now has been deemed impossible: creating strong interaction between light and magnetic fields and determining ways to control light with magnetism on the nanoscale.

Read more

Oct 13, 2015

Ray Kurzweil’s Wildest Prediction: Nanobots Will Plug Our Brains Into the Web by the 2030s

Posted by in categories: engineering, nanotechnology, neuroscience, Ray Kurzweil

I consider Ray Kurzweil a very close friend and a very smart person. Ray is a brilliant technologist, futurist, and a director of engineering at Google focused on AI and language processing. He has also made more correct (and documented) technology predictions about the future than anyone:

As reported, “of the 147 predictions that Kurzweil has made since the 1990s, fully 115 of them have turned out to be correct, and another 12 have turned out to be “essentially correct” (off by a year or two), giving his predictions a stunning 86% accuracy rate.”

Two weeks ago, Ray and I held an hour-long webinar with my Abundance 360 CEOs about predicting the future. During our session, there was one of Ray’s specific predictions that really blew my mind.

Read more

Oct 11, 2015

Key to longevity? Blocking over 200 genes boosts lifespan

Posted by in categories: biotech/medical, genetics, health, life extension, nanotechnology

Aging is 100% genetic, the reason you go from infant to child to adult to old age.

We need to be scrutinizing Progeria, and the case of the girl who died at 20 and was stuck at the age of a toddler, for the key to the genes that will pause aging. While nanotechnology advances parallel with the cure for all diseases.


Once a bucket of genes linked to aging is removed, the lifespan of cells increases significantly, American scientists discovered during ten years of meticulous research, stressing that the results could be applied to humans.

Continue reading “Key to longevity? Blocking over 200 genes boosts lifespan” »

Oct 6, 2015

Nanobots could turn us into GODS

Posted by in categories: computing, internet, nanotechnology, neuroscience, Ray Kurzweil, singularity

Computer scientist Ray Kurzweil, founder of the California-based Singularity University, claims that by 2030s humans could be using nanobots to connect our brains to the cloud.

Read more

Sep 23, 2015

Permanent data storage with light

Posted by in categories: computing, materials, nanotechnology

The first all-optical permanent on-chip memory has been developed by scientists of Karlsruhe Institute of Technology (KIT) and the universities of Münster, Oxford, and Exeter. This is an important step on the way towards optical computers. Phase change materials that change their optical properties depending on the arrangement of the atoms allow for the storage of several bits in a single cell. The researchers present their development in the journal Nature Photonics (10.1038/nphoton.2015.182).

Light determines the future of information and communication technology: With optical elements, computers can work more rapidly and more efficiently. Optical fibers have long since been used for the transmission of data with light. But on a computer, data are still processed and stored electronically. Electronic exchange of data between processors and the memory limits the speed of modern computers. To overcome this so-called von Neumann bottleneck, it is not sufficient to optically connect memory and processor, as the optical signals have to be converted into electric signals again. Scientists, hence, look for methods to carry out calculations and data storage in a purely optical manner.

Scientists of KIT, the University of Münster, Oxford University, and Exeter University have now developed the first all-optical, non-volatile on-chip memory. “Optical bits can be written at frequencies of up to a gigahertz. This allows for extremely quick data storage by our all-photonic memory,” Professor Wolfram Pernice explains. Pernice headed a working group of the KIT Institute of Nanotechnology (INT) and recently moved to the University of Münster. “The memory is compatible not only with conventional optical fiber data transmission, but also with latest processors,” Professor Harish Bhaskaran of Oxford University adds.

Read more