Menu

Blog

Archive for the ‘nanotechnology’ category: Page 262

Feb 1, 2017

Coordinates of more than 23,000 atoms in technologically important material mapped

Posted by in categories: bioengineering, nanotechnology, particle physics, quantum physics

Nice read.


The results demonstrate that the positions of tens of thousands of atoms can be precisely identified and then fed into quantum mechanics calculations to correlate imperfections and defects with material properties at the single-atom level. This research will be published Feb 2. in the journal Nature.

Jianwei (John) Miao, a UCLA professor of physics and astronomy and a member of UCLA’s California NanoSystems Institute, led the international team in mapping the atomic-level details of the bimetallic nanoparticle, more than a trillion of which could fit within a grain of sand.

Continue reading “Coordinates of more than 23,000 atoms in technologically important material mapped” »

Feb 1, 2017

Black holes on an electronic chip

Posted by in categories: computing, cosmology, nanotechnology, quantum physics

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Continue reading “Black holes on an electronic chip” »

Jan 29, 2017

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Posted by in categories: biotech/medical, engineering, nanotechnology, robotics/AI

I cannot wait. However, wish they would look at cancer treatment as one of the first trials.


SCIENCE

Medical Robotics: Microrobots Could Be The Answer To Future Medicine

Continue reading “Medical Robotics: Microrobots Could Be The Answer To Future Medicine” »

Jan 29, 2017

Vanishing point: the rise of the invisible computer

Posted by in categories: computing, nanotechnology, quantum physics

Yep; devices and computers will no longer be needed given the advancements that are coming in areas of Quantum, Synbio, nanotech, etc.

However, with QC crystal technology and the work done on parallel states we have some very interesting things coming in communications, entertainment/ media, etc.


The long read: For decades, computers have got smaller and more powerful, enabling huge scientific progress. But this can’t go on for ever. What happens when they stop shrinking?

Continue reading “Vanishing point: the rise of the invisible computer” »

Jan 27, 2017

Researchers uncover how brain circuit elicits hunger responses during starvation

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Could we eventually see a day where we have cell circuitry nanobot pill that eliminates hunger and obesity as replacement to gastric bypasses? Maybe.


The human body responds to starving conditions, such as famine, to promote the chance of survival. It reduces energy expenditure by stopping heat production and promotes feeding behavior. These “hunger responses” are activated by the feeling of hunger in the stomach and are controlled by neuropeptide Y (NPY) signals released by neurons in the hypothalamus. However, how NPY signaling in the hypothalamus elicits the hunger responses has remained unknown.

Sympathetic motor neurons in the medulla oblongata are responsible for heat production by brown adipose tissue (BAT). Researchers centered at Nagoya University have now tested whether the heat-producing neurons respond to the same hypothalamic NPY signals that control hunger responses. They injected NPY into the hypothalamus of rats and tested the effect on heat production. Under normal conditions, blocking inhibitory GABAergic receptors or stimulating excitatory glutamatergic receptors in the sympathetic motor neurons induced heat production in BAT. After NPY injection, stimulating glutamatergic receptors did not produce heat, but inhibiting GABAergic receptors did. The study was recently reported in Cell Metabolism.

Continue reading “Researchers uncover how brain circuit elicits hunger responses during starvation” »

Jan 26, 2017

First 3D observation of nanomachines working inside cells

Posted by in categories: biotech/medical, nanotechnology

Today scientists at the Institute for Research in Biomedicine (IRB Barcelona) present a study in Cell (“The in vivo architecture of the exocyst provides structural basis for exocytosis”) where they have been able to observe protein nanomachines (also called protein complexes)—the structures responsible for performing cell functions—for the first time in living cells and in 3D. This work has been done in collaboration with researchers at the University of Geneva in Switzerland and the Centro Andaluz de Biología del Desarrollo in Seville.

3D observation of nanomachines in vivo

On the left, in vivo image of nanomachines using current microscopy techniques; on the right, the new method allows 3D observation of nanomachines in vivo and provides 25-fold improvement in precision (O. Gallego, IRB Barcelona)

Read more

Jan 25, 2017

First step towards photonic quantum network

Posted by in categories: nanotechnology, particle physics, quantum physics

Advanced photonic nanostructures are well on their way to revolutionising quantum technology for quantum networks based on light. Researchers from the Niels Bohr Institute have now developed the first building blocks needed to construct complex quantum photonic circuits for quantum networks. This rapid development in quantum networks is highlighted in an article in the journal Nature.

Quantum technology based on light (photons) is called , while electronics is based on electrons. Photons (light particles) and electrons behave differently at the quantum level. A quantum entity is the smallest unit in the microscopic world. For example, photons are the fundamental constituent of light and electrons of electric current. Electrons are so-called fermions and can easily be isolated to conduct current one electron at a time. In contrast photons are bosons, which prefer to bunch together. But since information for quantum communication based on photonics is encoded in a single photon, it is necessary to emit and send them one at a time.

Read more

Jan 24, 2017

Nanoparticles May Bring an End to Death

Posted by in category: nanotechnology

A team of scientists engineered a nanoparticle to help remove the toxins found in a wide variety of snake bites. This could impact the estimated 4.5 million people who are bitten by snakes each year, and the 100,000 who die from the venom.

Read more

Jan 21, 2017

Exploring the environmental impact of quantum dots

Posted by in categories: biological, food, nanotechnology, quantum physics

The speed with which microbes in a simplified ecosystem absorb the nanomaterials is raising concerns about the effect on organisms higher in the food chain.

Read more

Jan 20, 2017

3D Printing on the Nanoscale: 3D Laser Lithography Produces Improved Micro- and Nano-Optics

Posted by in categories: 3D printing, nanotechnology

The things that can be done with 3D printing never cease to amaze. To the casual observer with only a passing knowledge of the technology, it appears on the surface to be an interesting method of producing plastic odds and ends, and sometimes metal parts – but 3D printing is so much more, as anyone who follows the progression of the technology on a regular basis knows. The things it is capable of producing are often hard to wrap one’s mind around – especially when you look at 3D printing on the nanoscale.

A group of scientists from Lithuania, France and Australia are busy studying 3D printing on a very small scale. As a newly published paper entitled “Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography” explains, 3D printing is capable of creating functional objects that are impossible to produce via conventional manufacturing techniques, and structures at the miniature, micro- and nanoscales are no exception.

Read more