Menu

Blog

Archive for the ‘nanotechnology’ category: Page 234

Jan 7, 2019

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture

Posted by in categories: computing, nanotechnology, quantum physics

University of New South Wales researchers at the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) have shown for the first time that they can build atomic precision qubits in a 3D device — another major step towards a universal quantum computer.

The team of researchers, led by 2018 Australian of the Year and Director of CQC2T Professor Michelle Simmons, have demonstrated that they can extend their atomic qubit fabrication technique to multiple layers of a silicon crystal — achieving a critical component of the 3D chip architecture that they introduced to the world in 2015. This new research was published today in Nature Nanotechnology (“Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor”).

Professor Michelle Simmons and Joris Keizer, UNSW Sydney

Read more

Jan 7, 2019

Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications

Posted by in categories: materials, nanotechnology

Great Open Access article on Nanotechnology to ring in the new year. #Enjoy


Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

2D materials ; boron nitride nanotubes ; carbon nanotubes ; chirality control ; CVD ; graphene ; helicity ; synthesis ;

Read more

Jan 7, 2019

“Bionic Mushrooms” Fuse Nanotech, Bacteria and Fungi

Posted by in categories: 3D printing, biological, cyborgs, engineering, nanotechnology, transhumanism

(Hoboken, N.J. — Nov. 7, 2018) — In their latest feat of engineering, researchers at Stevens Institute of Technology have taken an ordinary white button mushroom from a grocery store and made it bionic, supercharging it with 3D-printed clusters of cyanobacteria that generate electricity and swirls of graphene nanoribbons that can collect the current.

The work, reported in the Nov. 7 issue of Nano Letters, may sound like something straight out of Alice in Wonderland, but the hybrids are part of a broader effort to better improve our understanding of cells biological machinery and how to use those intricate molecular gears and levers to fabricate new technologies and useful systems for defense, healthcare and the environment.

“In this case, our system – this bionic mushroom — produces electricity,” said Manu Mannoor, an assistant professor of mechanical engineering at Stevens. “By integrating cyanobacteria that can produce electricity, with nanoscale materials capable of collecting the current, we were able to better access the unique properties of both, augment them, and create an entirely new functional bionic system.”

Continue reading “‘Bionic Mushrooms’ Fuse Nanotech, Bacteria and Fungi” »

Jan 7, 2019

Powerful X-ray beams unlock secrets of nanoscale crystal formation

Posted by in categories: nanotechnology, particle physics

High-energy X-ray beams and a clever experimental setup allowed researchers to watch a high-pressure, high-temperature chemical reaction to determine for the first time what controls formation of two different nanoscale crystalline structures in the metal cobalt. The technique allowed continuous study of cobalt nanoparticles as they grew from clusters including tens of atoms to crystals as large as five nanometers.

Read more

Jan 4, 2019

Excitons pave the way to higher-performance electronics

Posted by in categories: computing, nanotechnology, quantum physics

After developing a method to control exciton flows at room temperature, EPFL scientists have discovered new properties of these quasiparticles that can lead to more energy-efficient electronic devices.

They were the first to control flows at . And now, the team of scientists from EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES) has taken their technology one step further. They have found a way to control some of the properties of excitons and change the polarization of the light they generate. This can lead to a new generation of electronic devices with transistors that undergo less energy loss and heat dissipation. The scientists’ discovery forms part of a new field of research called valleytronics and has just been published in Nature Photonics.

Excitons are created when an electron absorbs light and moves into a higher energy level, or “energy band” as they are called in solid quantum physics. This excited electron leaves behind an “electron hole” in its previous band. And because the electron has a and the hole a positive charge, the two are bound together by an electrostatic force called a Coulomb force. It’s this electron-electron hole pair that is referred to as an exciton.

Continue reading “Excitons pave the way to higher-performance electronics” »

Dec 29, 2018

Australian researchers have developed a test that can detect cancer cells in 10 minutes

Posted by in categories: biotech/medical, nanotechnology

A quick and easy test devised by scientists from the University of Queensland could transform cancer diagnosis as we know it.

Cancer is a difficult disease to diagnose because different types are characterised by different signatures. Until now, scientists have been unable to find a unique signature common to all forms of cancer that would set it apart from healthy cells.

That’s what University of Queensland researchers Dr Laura Carrascosa, Dr Abu Sina and Professor Matt Trau have addressed. They have discovered a unique DNA nanostructure that seems to be common to all types of cancer and is visible when cancer cells are placed in water.

Continue reading “Australian researchers have developed a test that can detect cancer cells in 10 minutes” »

Dec 28, 2018

New Fiber Could Be the Foundation for Futuristic Smart Garments

Posted by in categories: biotech/medical, nanotechnology

Self-assembling silver tubes might someday wire up your clothes.


Inspired by blood vessels, the silver nanowires practically manufacture themselves.

Read more

Dec 27, 2018

Nucleus-specific X-ray stain for 3D virtual histology

Posted by in categories: bioengineering, nanotechnology

Histology is used to identify structural details of tissue at the microscale in the pathology lab, but analyses remain two-dimensional (2D) as they are limited to the same plane. Nondestructive 3D technologies including X-ray micro and nano-computed tomography (nanoCT) have proven validity to understand anatomical structures, since they allow arbitrary viewing angles and 3D structural detail. However, low attenuation of soft tissue has hampered their application in the field of 3D virtual histology. In a recent study, now published on Scientific Reports, Mark Müller and colleagues at the Department of Physics and Bioengineering have developed a hematein-based X-ray staining method to specifically target cell nuclei, followed by demonstrations on a whole liver lobule of a mouse.


Dec 27, 2018

MIT Scientists Use Nanoparticles to Engineer Incredible Glowing Plants

Posted by in category: nanotechnology

Imagine reading by plant light, and glow-in-the-dark trees instead of street lamps. That’s on the horizon thanks to these engineers.

Read more

Dec 25, 2018

Watch: Morphing material goes from flat to face

Posted by in categories: materials, nanotechnology

Scientists have created a rubbery, shape-shifting material that morphs from one sophisticated form to another on demand.

The shapes programmed into a polymer appear in ambient conditions and melt away when under heat. The process also works in reverse.

Continue reading “Watch: Morphing material goes from flat to face” »