Menu

Blog

Archive for the ‘nanotechnology’ category: Page 143

Apr 16, 2022

Imagine — Worldbuilding Edition

Posted by in categories: life extension, media & arts, nanotechnology, robotics/AI

This video was produced on April 15, 2022 for the Future of Life Insititute’s Worldbuilding program.

Please support the Future of Life Institute: https://futureoflife.org.

Continue reading “Imagine — Worldbuilding Edition” »

Apr 13, 2022

Rotating blue laser light reveals unimagined dynamics in living cells

Posted by in categories: biotech/medical, nanotechnology

When cities transform into a colorful world of lights as darkness falls, it’s often only possible to estimate their contours, which depending on the perspective can draw the attention to key details or trivia. In fluorescence microscopy, biological cells are marked with fluorescent dyes and excited to luminesce in specific areas by optical switches– like a city at night. However, this light is usually too faint for small, rapid objects, or even goes out after a while. This is known as fluorescence bleaching.

Now, a new approach developed by Prof. Dr. Alexander Rohrbach and his team in the Laboratory for Bio-and Nano-Photonics at the University of Freiburg has found a way to make the smallest objects clearly visible without fluorescence. In this way, cellular structures or virus-sized particles can be observed 100 to 1,000 times longer, ten to 100-times faster and with almost doubled resolution than with . While fluorescence microscopy records what you might call “night-time images” of structures, ROCS microscopy takes “day-time images”—opposites that can complement each other excellently. Rohrbach and his colleagues describe various applications of the technology in the latest issue of Nature Communications.

Apr 12, 2022

World’s first LED lights developed from rice husks

Posted by in categories: chemistry, computing, engineering, food, nanotechnology, quantum physics, sustainability

Milling rice to separate the grain from the husks produces about 100 million tons of rice husk waste globally each year. Scientists searching for a scalable method to fabricate quantum dots have developed a way to recycle rice husks to create the first silicon quantum dot (QD) LED light. Their new method transforms agricultural waste into state-of-the-art light-emitting diodes in a low-cost, environmentally friendly way.

The research team from the Natural Science Center for Basic Research and Development, Hiroshima University, published their findings on January 28, 2022, in the American Chemical Society journal ACS Sustainable Chemistry & Engineering.

“Since typical QDs often involve toxic material, such as cadmium, lead, or other , have been frequently deliberated when using nanomaterials. Our proposed process and for QDs minimizes these concerns,” said Ken-ichi Saitow, lead study author and a professor of chemistry at Hiroshima University.

Apr 12, 2022

New nanotechnology bubbles could speed up pharma development

Posted by in categories: biotech/medical, nanotechnology

A new technique for synthesising and screening molecules developed by Danish researchers has been described in a paper published in Nature Chemistry.

The technique, dubbed “single particle combinatorial lipidic nanocontainer fusion based on DNA-mediated fusion” or SPARCLD, uses tiny soap-like “bubbles” to produce more than 40,000 different molecules on an area the size of a pinhead.

The bubbles form “nano-containers” inside which molecules can be produced using DNA nanotechnology. About 42,000 nano-containers can fit on one square millimetre.

Apr 11, 2022

Optical vortex crystals for photonic simulations of complex systems

Posted by in categories: climatology, nanotechnology, space

The system developed in Milano is robust and it also has the potential to process information encoded in different coupled systems, including far and enormous galaxies. Thanks to these new results, it is now possible to simulate in the lab complex coupled systems, with order altered by stable defects, difficult to be reproduced otherwise since involving ginormous scale, like galaxies, or part of extreme hydrodynamic systems.


Water whirlpools, smoke rings, violent tornados and spiral galaxies are all examples of twists in fluids, although very different each other. Analogous twists, but in the realm of light, have been created by the research group coordinated by Antonio Ambrosio at the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology), in Milano (Italy). The results, published in the journal Nature Photonics, show the realization of 100 light vortices, coupled to form an ordered structure, a light crystal.

Mutual interaction of light and nanostructured materials is the focus of the research of Antonio Ambrosio, Principal Investigator of the research line Vectorial Nano-imaging at IIT in Milano and grantee of the ERC Consolidator project “METAmorphoses.”

Continue reading “Optical vortex crystals for photonic simulations of complex systems” »

Apr 11, 2022

No small measure: Probing the mechanics of gold contacts at the nanoscale

Posted by in categories: nanotechnology, particle physics, quantum physics

Miniaturization lies at the heart of countless technological advances. It is undeniable that as devices and their building blocks get smaller, we manage to unlock new functionalities and come up with unprecedented applications. However, with more and more scientists delving into materials with structures on the atomic scale, the gaps in our current understanding of nanomaterial physics are becoming more prominent.

For instance, the nanomaterial’s surface represents one such knowledge gap. This is because the influence of surface quantum effects becomes much more apparent when the surface-to-volume ratio of a material is high. In nanoelectromechanical systems (NEMS), a current hot topic in research, the physical properties of the nanomaterials greatly differ from their bulk counterparts when their size is reduced to a few atoms. A solid understanding of the mechanical properties of nanowires and nanocontacts—integral components of NEMS—is essential for advancing this technology. But, measuring them has proven a challenging task.

Against this backdrop, a research team from Japan recently achieved an unprecedented feat when they managed to precisely measure the elastic modulus of gold nanocontacts stretched down to a few atoms. The study, published in Physical Review Letters, was led by Prof. Yoshifumi Oshima of Japan Advanced Institute of Science and Technology (JAIST). The rest of the team included post-doctoral research fellow Jiaqi Zhang and Professor Masahiko Tomitori from JAIST, and Professor Toyoko Arai of Kanazawa University.

Apr 10, 2022

Ultrafast Photoacoustic Nanometrology of InAs Nanowires Mechanical Properties

Posted by in categories: materials, nanotechnology

InAs nanowires are emerging as go-to materials in a variety of applications ranging from optoelectronics to nanoelectronics, yet a consensus on their mechanical properties is still lacking. The mechanical properties of wurtzite InAs nanowires are here investigated via a multitechnique approach, exploiting electron microscopies, ultrafast photoacoustics, and finite element simulations. A benchmarked elastic matrix is provided and a Young modulus of 97 GPa is obtained, thus clarifying the debated issue of InAs NW elastic properties. The validity of the analytical approaches and approximations commonly adopted to retrieve the elastic properties from ultrafast spectroscopies is discussed. The mechanism triggering the oscillations is unveiled. Nanowire oscillations in this system arise from a sudden expansion of the supporting substrate rather than the nanowire itself.

Apr 10, 2022

Artificial intelligence is already upending geopolitics

Posted by in categories: biotech/medical, ethics, law, nanotechnology, robotics/AI, security

The TechCrunch Global Affairs Project examines the increasingly intertwined relationship between the tech sector and global politics.

Geopolitical actors have always used technology to further their goals. Unlike other technologies, artificial intelligence (AI) is far more than a mere tool. We do not want to anthropomorphize AI or suggest that it has intentions of its own. It is not — yet — a moral agent. But it is fast becoming a primary determinant of our collective destiny. We believe that because of AI’s unique characteristics — and its impact on other fields, from biotechnologies to nanotechnologies — it is already threatening the foundations of global peace and security.

The rapid rate of AI technological development, paired with the breadth of new applications (the global AI market size is expected to grow more than ninefold from 2020 to 2028) means AI systems are being widely deployed without sufficient legal oversight or full consideration of their ethical impacts. This gap, often referred to as the pacing problem, has left legislatures and executive branches simply unable to cope.

Apr 8, 2022

Michael Fossel | Aging: Understanding it, Reversing it

Posted by in categories: biotech/medical, computing, life extension, nanotechnology, neuroscience

Dr Fossel talking about dementia, telomeres, and clarifying some experimental myths.


Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.
Program & apply to join: https://foresight.org/biotech-health-extension-program/

Continue reading “Michael Fossel | Aging: Understanding it, Reversing it” »

Apr 4, 2022

A million times faster: DNA nanotechnology could speed up pharmaceutical development while minimizing costs

Posted by in categories: biotech/medical, chemistry, economics, nanotechnology

A new tool speeds up development of vaccines and other pharmaceutical products by more than 1 million times while minimizing costs.

In search of pharmaceutical agents such as new vaccines, industry will routinely scan thousands of related candidate molecules. A novel technique allows this to take place on the nano scale, minimizing use of materials and energy. The work is published in the journal Nature Chemistry.

More than 40,000 molecules can be synthesized and analyzed within an area smaller than a pinhead. The method, developed through a highly interdisciplinary research effort in Denmark, promises to drastically reduce the amounts of material, energy, and economic cost for .