Menu

Blog

Archive for the ‘nanotechnology’ category: Page 114

Nov 13, 2022

Previously unseen processes reveal path to better rechargeable battery performance

Posted by in categories: chemistry, nanotechnology

To design better rechargeable ion batteries, engineers and chemists from the University of Illinois Urbana-Champaign collaborated to combine a powerful new electron microscopy technique and data mining to visually pinpoint areas of chemical and physical alteration within ion batteries.

A study led by materials science and engineering professors Qian Chen and Jian-Min Zuo is the first to map out altered domains inside rechargeable at the nanoscale—a 10-fold or more increase in resolution over current X-ray and optical methods.

The findings are published in the journal Nature Materials.

Nov 13, 2022

Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a study performed by researchers in Singapore, Saudi Arabia and Finland. The work was published in Nature Chemistry.

Ordinary solid matter consists of atoms organized in a crystal lattice. The chemical character of the atoms and lattice symmetry define the properties of the matter, for instance, whether it is a metal, a semiconductor or and electric insulator. The lattice symmetry may be changed by such as temperature or , which can induce structural transitions and transform even an electric insulator to an electric conductor, that is, a metal.

Larger identical entities such as nanoparticles or atomically precise metal nanoclusters can also organize into a , to form so called meta-materials. However, information on how to engineer the growth of such materials from their has been scarce since the is a typical self-assembling process.

Nov 12, 2022

Researchers proposed a new theory to grow pure carbon nanotubes

Posted by in category: nanotechnology

Enot-poloskun/iStock.

Carbon Nanotube (CNTs)

Nov 11, 2022

For local mRNA delivery, nanoparticles stick to the bone

Posted by in category: nanotechnology

Researchers designed a lipid nanoparticle that sticks to bone minerals, increasing mRNA delivery and therapeutic protein expression in the bone.

Nov 9, 2022

Chirping toward a Quantum RAM

Posted by in categories: computing, information science, mobile phones, nanotechnology, quantum physics

A new quantum random-access memory device reads and writes information using a chirped electromagnetic pulse and a superconducting resonator, making it significantly more hardware-efficient than previous devices.

Random-access memory (or RAM) is an integral part of a computer, acting as a short-term memory bank from which information can be quickly recalled. Applications on your phone or computer use RAM so that you can switch between tasks in the blink of an eye. Researchers working on building future quantum computers hope that such systems might one day operate with analogous quantum RAM elements, which they envision could speed up the execution of a quantum algorithm [1, 2] or increase the density of information storable in a quantum processor. Now James O’Sullivan of the London Centre for Nanotechnology and colleagues have taken an important step toward making quantum RAM a reality, demonstrating a hardware-efficient approach that uses chirped microwave pulses to store and retrieve quantum information in atomic spins [3].

Just like quantum computers, experimental demonstrations of quantum memory devices are in their early days. One leading chip-based platform for quantum computation uses circuits made from superconducting metals. In this system, the central processing is done with superconducting qubits, which send and receive information via microwave photons. At present, however, there exists no quantum memory device that can reliably store these photons for long times. Luckily, scientists have a few ideas.

Nov 7, 2022

Scientists Build Synthetic Molecular Machines That Can Read Data

Posted by in categories: chemistry, computing, genetics, nanotechnology

Turing’s machine should sound familiar for another reason. It’s similar to the way ribosomes read genetic code on ribbons of RNA to construct proteins.

Cellular factories are a kind of natural Turing machine. What Leigh’s team is after would work the same way but go beyond biochemistry. These microscopic Turing machines, or molecular computers, would allow engineers to write code for some physical output onto a synthetic molecular ribbon. Another molecule would travel along the ribbon, read (and one day write) the code, and output some specified action, like catalyzing a chemical reaction.

Now, Leigh’s team says they’ve built the first components of a molecular computer: A coded molecular ribbon and a mobile molecular reader of the code.

Nov 6, 2022

Fluorescence achieved in light-driven molecular motors

Posted by in categories: biotech/medical, chemistry, nanotechnology

Rotary molecular motors were first created in 1999, in the laboratory of Ben Feringa, Professor of Organic Chemistry at the University of Groningen. These motors are driven by light. For many reasons, it would be good to be able to make these motor molecules visible. The best way to do this is to make them fluoresce. However, combining two light-mediated functions in a single molecule is quite challenging. The Feringa laboratory has now succeeded in doing just that, in two different ways. These two types of fluorescing light-driven rotary motors were described in Nature Communications (September 30) and Science Advances (November 4).

“After the successful design of molecular motors in the past decades, an important next goal was to control various functions and properties using such motors,” explains Feringa, who shared in the Nobel Prize in Chemistry in 2016. “As these are light-powered rotary motors, it is particularly challenging to design a system that would have another function that is controlled by , in addition to the rotary motion.”

Feringa and his team were particularly interested in since this is a prime technique that is widely used for detection, for example in biomedical imaging. Usually, two such photochemical events are incompatible in the same molecule; either the light-driven motor operates and there is no fluorescence or there is fluorescence and the motor does not operate. Feringa says, “We have now demonstrated that both functions can exist in parallel in the same molecular system, which is rather unique.”

Nov 6, 2022

Simple 3D-Printed Device May Pave the Way for Far More Powerful Cell Phones and WIFI

Posted by in categories: mobile phones, nanotechnology

A 3D-printed device in a tank of water braids nanowires and moves microparticles.

New antennae to access higher and higher frequency ranges will be needed for the next generation of phones and wireless devices. One way to make antennae that work at tens of gigahertz — the frequencies needed for 5G and higher devices — is to braid filaments about 1 micrometer in diameter. However, today’s industrial fabrication techniques won’t work on fibers that small.

Continue reading “Simple 3D-Printed Device May Pave the Way for Far More Powerful Cell Phones and WIFI” »

Nov 6, 2022

Stretchable, Flexible, Wearable Solar Cells Take Top Prize at Research Expo 2016

Posted by in categories: computing, engineering, health, nanotechnology, solar power, sustainability, wearables

Solar cells that are stretchable, flexible and wearable won the day and the best poster award from a pool of 215 at Research Expo 2016 April 14 at the University of California San Diego. The winning nanoengineering researchers aim to manufacture small, flexible devices that can power watches, LEDs and wearable sensors. The ultimate goal is to design and build much bigger flexible solar cells that could be used as power sources and shelter in natural disasters and other emergencies.

Research Expo is an annual showcase of top graduate research projects for the Jacobs School of Engineering at UC San Diego. During the poster session, graduate students are judged on the quality of their work and how well they articulate the significance of their research to society. Judges from industry, who often are alumni, pick the winners for each department. A group of faculty judges picks the overall winner from the six department winners.

Continue reading “Stretchable, Flexible, Wearable Solar Cells Take Top Prize at Research Expo 2016” »

Nov 6, 2022

Breaking Through to the Brain

Posted by in categories: bioengineering, biotech/medical, nanotechnology, robotics/AI

Traumatic brain injuries might have faded from the headlines since the NFL reached a $765 million settlement for concussion-related brain injuries, but professional football players aren’t the only ones impacted by these injuries. Each year, between 2 million and 3 million Americans suffer from traumatic brain injuries—from elderly people who fall and hit their head, to adolescents playing sports or falling out of trees, to people in motor vehicle accidents.

There are currently no treatments to stop the long-term effects of a traumatic brain injury (TBI), and accurate diagnosis requires a visit to a medical center for a CT scan or MRI, both of which involve large, expensive equipment.

UC San Diego bioengineering Professor Ester Kwon, who leads the Nanoscale Bioengineering research lab at the Jacobs School of Engineering, aims to change that. Kwon’s team is developing nanomaterials—materials with dimensions on the nanometer scale—that could be used to diagnose traumatic brain injury on the spot, be it a sports field, the scene of a car accident, or a clinical setting. They’re also engineering nanoparticles that could target the portion of the patient’s brain that was injured, delivering specific therapeutics to treat the injury and improve the patient’s long-term quality of life.