Menu

Blog

Archive for the ‘materials’ category: Page 88

Aug 25, 2023

Diamond’s Downfall: The Quantum World’s Next Top Material

Posted by in categories: materials, quantum physics

Diamond has long been the preferred material for quantum sensing, but its size limits its applications. Recent research highlights hBN’s potential as a replacement, especially after TMOS researchers developed methods to stabilize its atomic defects and study its charge states, opening doors for its integration into devices where diamond can’t fit.

Diamond has long held the crown in the realm of quantum sensing, thanks to its coherent nitrogen-vacancy centers, adjustable spin, magnetic field sensitivity, and capability to operate at room temperature. With such a suitable material so easy to fabricate and scale, there’s been little interest in exploring diamond alternatives.

However, this titan of the quantum domain has a vulnerability. It’s simply too large. Much like how an NFL linebacker isn’t the top pick for a jockey in the Kentucky Derby, diamond falls short when delving into quantum sensors and data processing. When diamonds get too small, the super-stable defect it’s renowned for begins to crumble. There is a limit at which a diamond becomes useless.

Aug 23, 2023

Lithium-Ion Batteries CAN Be Recycled! RecycLiCo Battery Materials & Kemetco Research Tour

Posted by in categories: materials, sustainability

Recycling is now cheaper than mining.


Sandy visits the teams at RecycLiCo Battery Materials and Kemetco Research for an in-depth discussion on battery recycling and a tour of a facility that’s making this dream a reality.

Continue reading “Lithium-Ion Batteries CAN Be Recycled! RecycLiCo Battery Materials & Kemetco Research Tour” »

Aug 22, 2023

Engineers use kirigami to make ultrastrong, lightweight structures

Posted by in category: materials

Cellular solids are materials composed of many cells that have been packed together, such as in a honeycomb. The shape of those cells largely determines the material’s mechanical properties, including its stiffness or strength. Bones, for instance, are filled with a natural material that enables them to be lightweight, but stiff and strong.

Inspired by bones and other cellular solids found in nature, humans have used the same concept to develop architected materials. By changing the geometry of the unit cells that make up these materials, researchers can customize the material’s mechanical, thermal, or acoustic properties. Architected materials are used in many applications, from shock-absorbing packing foam to heat-regulating radiators.

Using , the ancient Japanese art of folding and cutting paper, MIT researchers have now manufactured a type of high-performance architected material known as a plate lattice, on a much larger scale than scientists have previously been able to achieve by additive fabrication. This technique allows them to create these structures from metal or other materials with custom shapes and specifically tailored mechanical properties.

Aug 20, 2023

AI platform ‘evolves’ metamaterials

Posted by in categories: materials, robotics/AI

With just a couple of “pieces of matter”—representations of one basic unit of a material—the new platform can create thousands of previously unknown morphologies, or structures, with the properties Amir Alavi specified.(Credit: Amir Alavi/U. Pittsburgh)

In a paper published in the journal Advanced Intelligent Systems, Amir Alavi, assistant professor of civil and environmental engineering in the University of Pittsburgh’s Swanson School of Engineering, outlines a platform for the evolution of metamaterials, synthetic materials purposefully engineered to have specific properties.

Aug 20, 2023

Plasmonic Metamaterials Bend Light Backwards

Posted by in categories: materials, nanotechnology

A thin film patterned with nanoantennas exhibits negative refraction of light, a useful feature for subwavelength imaging.

Materials that refract light the “wrong way” could be used to make optical lenses that can image objects smaller than visible wavelengths. So-called negative refraction has been demonstrated in thin films in which surface plasmons—collective charge oscillations—have been excited by a powerful laser. Now, an international team involving Purdue University, Indiana, the University of Glasgow, UK, and Imperial College London show that they can more efficiently achieve the same effect by placing an array of nanoscale antennas on the film.

Aug 18, 2023

Scientists Trapped Light Inside a Metamaterial and Made It 10x More Magnetic

Posted by in category: materials

This could open doors to technologies we thought were impossible.

Aug 17, 2023

Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals

Posted by in category: materials

Here, the authors demonstrate an analogue reversed Cherenkov radiation at mid-infrared frequencies in MoO3, a natural hyperbolic material, and show that the radiation angle and the quality factor can be increased by stacking hBN layers on the MoO3 surface.

Aug 17, 2023

Scientists trap light inside a magnet

Posted by in categories: materials, quantum physics

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons—quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light—all by itself.

As their experiments show, the optical responses of this material to magnetic phenomena are orders of magnitude stronger than those in typical magnets. “Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” said Dr. Florian Dirnberger, the lead-author of the study.

Aug 17, 2023

Scientists Have Summoned a Massless Demon Particle

Posted by in categories: materials, particle physics

It’ll help unlock the inner workings of superconductors.

Aug 17, 2023

Scientists explain the behavior of supercooled liquids

Posted by in category: materials

Kranthi Mandadapu.

This is according to a press release by the institution published on Tuesday.

Page 88 of 309First8586878889909192Last