Menu

Blog

Archive for the ‘materials’ category: Page 253

Apr 13, 2018

Researchers find combination for small data storage and tinier computers

Posted by in categories: computing, materials

It may sound like a futuristic device out of a spy novel, a computer the size of a pinhead, but according to new research from the University of New Hampshire, it might be a reality sooner than once thought. Researchers have discovered that using an easily made combination of materials might be the way to offer a more stable environment for smaller and safer data storage, ultimately leading to miniature computers.

“We’re really optimistic about the possibilities,” said Jiadong Zang, assistant professor of physics. “There is a push in the computer industry toward smaller and more powerful , yet current combinations of materials can create volatile situations, where data can be lost once the device is turned off. Our research points to this new combination as a much safer option. We’re excited that our findings might have the potential to change the landscape of information technology.”

In their study, recently published in the journal Science Advances, the researchers outline their proposed combination which would allow for a more stable perpendicular anisotropic energy (PMA), the key driving component in a computer’s RAM (random-access memory) or . The material would be made up of ultrathin films, known as Fe monolayers, grown on top of non-magnetic substances, in this case X nitride substrate, where X could be boron, gallium, aluminum or indium. According to the research, this combination showed anisotropic energy would increase by fifty times, from 1 meV to 50 meV, allowing for larger amounts of data to be stored in smaller environments. There is a provisional patent pending which has been filed by UNHInnovation, which advocates for, manages, and promotes UNH’s intellectual property.

Read more

Apr 11, 2018

Robust and inexpensive catalysts for hydrogen production

Posted by in categories: energy, materials

Researchers from the Ruhr University Bochum (RUB) and the University of Warwick were able to observe the smallest details of hydrogen production with the synthetic mineral pentlandite. This makes it possible to develop strategies for the design of robust and cost-effective catalysts for hydrogen production. The working groups of Prof. Wolfgang Schuhmann and Dr. Ulf-Peter Apfel from the RUB and the team headed by Prof. Patrick R. Unwin from the University of Warwick published their results in the journal Angewandte Chemie.

Hydrogen gas is considered a possible future source of energy and can be produced from water using platinum catalysts and electricity. However, researchers seek alternative catalysts made of cheaper and more readily available with equally high efficiency. There are a number of materials that, like platinum, are able to catalyse the reaction of water into hydrogen. “These include metal chalcogenides such as the mineral pentlandite, which is just as efficient as platinum and is also significantly more stable toward poisons such as sulphur,” explains Ulf-Peter Apfel. Pentlandite consists of iron, nickel and sulphur. Its structure is similar to that of the catalytic centres of hydrogen-producing enzymes found in a variety of sources, including green algae.

In the current study, the researchers investigated rates of artificially prepared crystalline surfaces of the mineral pentlandite in a drop of liquid with a diameter of a few hundred nanometres. They used scanning electrochemical cell microscopy for this purpose.

Continue reading “Robust and inexpensive catalysts for hydrogen production” »

Apr 8, 2018

Physicists Just Discovered an Entirely New Type of Superconductivity

Posted by in categories: materials, physics

One of the ultimate goals of modern physics is to unlock the power of superconductivity, where electricity flows with zero resistance at room temperature.

Progress has been slow, but physicists have just made an unexpected breakthrough. They’ve discovered a superconductor that works in a way no one’s ever seen before — and it opens the door to a whole world of possibilities not considered until now.

In other words, they’ve identified a brand new type of superconductivity.

Continue reading “Physicists Just Discovered an Entirely New Type of Superconductivity” »

Apr 3, 2018

Now, there’s an injectable bandage that can heal fatal internal injuries

Posted by in categories: biotech/medical, materials

Given the high mortality rates due to hemorrhaging, there is an unmet need to quickly self-administer materials that prevent fatality due to excessive blood loss.

Read more

Apr 3, 2018

Novel Hydrogel-Based Solar Vapor Generator Yields Clean Drinking Water

Posted by in category: materials

Finding a cheap and effective water purification process would have global implications.

A research team from the University of Texas at Austin’s Cockrell School of Engineering has developed a new cost-effective and compact technology that combines gel-polymer hybrid materials to improve the purification process for drinking water.

The new materials possess both hydrophilic—an attraction to water—qualities and semiconducting, or solar-absorbing properties. This enables the hydrogel to produce clean, safe drinking water from virtually any source, whether it’s from the oceans or contaminated supplies.

Continue reading “Novel Hydrogel-Based Solar Vapor Generator Yields Clean Drinking Water” »

Apr 2, 2018

Finding order in disorder demonstrates a new state of matter

Posted by in categories: materials, quantum physics

Physicists have identified a new state of matter whose structural order operates by rules more aligned with quantum mechanics than standard thermodynamic theory. In a classical material called artificial spin ice, which in certain phases appears disordered, the material is actually ordered, but in a “topological” form.

Read more

Mar 31, 2018

This Ultra-Thin Material Can Stop Bullets

Posted by in categories: entertainment, materials

Researchers use the world’s strongest material to create a film that can harden like a diamond upon impact.

Read more

Mar 30, 2018

The Wild New Materials of the Future Will Be Discovered With AI

Posted by in categories: materials, robotics/AI

Materials science is sometimes serendipitous but more often painstaking. The latest machine learning tools are offering scientists a way to significantly accelerate the process of discovery with AI.

Read more

Mar 30, 2018

A Material World – Building a Future from the Atoms Up: Rob Moore Public Lecture

Posted by in categories: materials, particle physics

Wednesday Apr. 4, 2018 at 7 PM ET

The live webcast will appear on this page.

Continue reading “A Material World – Building a Future from the Atoms Up: Rob Moore Public Lecture” »

Mar 27, 2018

Rare Type of Supernova Extinguishes Star at Unprecedented Speed

Posted by in categories: cosmology, materials

Supernovae produce some of the most powerful explosions in the cosmos, expelling a doomed star’s contents at velocities reaching 10 percent the speed of light. It usually takes a few weeks or months for a supernova to fade into nothingness, but astronomers have now documented a record-setting case in which a star was extinguished in just a few days.

They’re called Fast-Evolving Luminous Transients (FELTs), an exotic type of supernova discovered only a few years ago. As the name implies, these supernovae develop quickly, they’re very bright, and then they disappear. Unlike more “conventional” supernovae, such as Type Ia supernovae, the duration of these explosions can be measured in days rather than weeks or months. These celestial events are rare, and only a handful of FELTs have ever been documented.

The perplexing thing about FELTs, however, isn’t so much that they’re short lived—it’s that they’re also very bright. Scientists have subsequently theorized that they’re the glowing remnant of a gamma-ray burst (a massive explosion produced by a collapsing star that gives birth to a black hole), a supernova fueled by a magnetar (a neutron star with a powerful magnetic field), or a failed Type Ia supernova (in which a white dwarf star sucks up material from a nearby star, eventually causing it to explode). New research published today in Nature Astronomy suggests it’s none of the above.

Continue reading “Rare Type of Supernova Extinguishes Star at Unprecedented Speed” »