Menu

Blog

Archive for the ‘life extension’ category: Page 157

Nov 1, 2022

Dietary Fiber And SCFAs Are Relatively Higher in Centenarians-A Pathway To Longevity?

Posted by in categories: genetics, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Continue reading “Dietary Fiber And SCFAs Are Relatively Higher in Centenarians-A Pathway To Longevity?” »

Oct 31, 2022

Want To Live Longer? How Life Extension Industry Will Reboot Health, Wellness and The Economy

Posted by in categories: economics, life extension

Do you want to live a better, healthier and longer life? Me too.

Lets go back to 1937, when Albert Szent-Györgyi won a Nobel Prize for his discovery of ascorbic acid—vitamin C—that enables the body to efficiently use carbohydrates, fats, and protein (I use it a lot during cold and flu season, you?). It was a massively consequential discovery, as it not only saved and extended countless lives, but it also contributed to the foundations of modern nutrition. Szent-Györgyi, himself, was blessed with a long life; he died in 1986 at the age of 93. But he might just as well be known for what he said on his 90th birthday: “I wish I could be 75 again!”

No doubt, that comment elicits more than a few eyerolls today. Especially since the CDC has recently downgraded American life expectancy to just 77 years. But could 75 someday be the new 40—an age by which, like Szent-Györgyi, we’re only hitting our stride? Well, if the burgeoning activity of the life extension industry is any indication, we may actually be on the cusp of making it so—and enjoying life to the fullest right up to the extended end. Which brings us to the morbid thought of mortality—that end state most of us seek to delay, if not dodge.

Oct 31, 2022

Cedars-Sinai Awarded $8 Million to Launch New Stem Cell Clinic

Posted by in categories: biotech/medical, life extension

Newswise — LOS ANGELES (Oct. 28, 2022) — Cedars-Sinai has been awarded a five-year, $8 million grant from California’s stem cell agency to launch an innovative new clinic that will expand patients’ access to stem cell and gene therapies, increase research and training in regenerative medicine, foster greater collaboration with eight similar clinics across the state and help educate the public about stem cell and related therapies.

The California Institute for Regenerative Medicine (CIRM) approved Cedars-Sinai’s plan to establish an Alpha Stem Cell Clinic, bringing Cedars-Sinai into a network of Alpha sites throughout California. The Cedars-Sinai clinic will develop preclinical studies into early and later phase clinical trials with the goal of establishing advanced regenerative medicine treatments that are FDA-approved for patients with debilitating diseases.

The Cedars-Sinai initiative is being led by the Cedars-Sinai Board of Governors Regenerative Medicine Institute and the Smidt Heart Institute. They are modeling the new Alpha Clinic on a jointly run Regenerative Medicine Clinic established at Cedars-Sinai in 2014—expanding scientific discovery and clinical trials for neurological, cardiovascular, musculoskeletal and autoimmune diseases.

Oct 31, 2022

Rapamycin is the most promising aging intervention we currently have

Posted by in categories: biotech/medical, life extension

It was in 1975 when scientists from Ayerst (now Pfizer) discovered a novel compound called rapamycin (also known as Sirolimus) in bacteria on Rapa Nui(Easter Island) in Chile. In 1999 rapamycin obtained FDA approval for the prevention of acute rejection of renal transplant. Unknown at the time, rapamycin would become the most potent anti-aging drug that humans currently hold.

This is the first article of a two-part series on rapamycin.

The profound effect rapamycin has on lifespan was first observed in yeast cells, and later confirmed in every model organism tested, including the nematode C. elegans, fruit flies, and mice.

Oct 30, 2022

Combining stem cell rejuvenation and senescence targeting to synergistically extend lifespan

Posted by in categories: biotech/medical, life extension

To test the interaction between senolytic removal of senescent cells and cellular reprograming, we designed a model combining these two interventions in an inducible overexpression system in Drosophila. First, we used the four Yamanaka factor based OKSM approach as this had been previously shown to induce pluripotent stem cells in mice [7], humans [29 31] and non-mammalian vertebrate and invertebrate species [32]. To make a senolytic factor for Drosophila, we took advantage of the mouse sequence (FOXO4-DRI [22]) to design an orthologous peptide based on the Drosophila foxo (forkhead box, sub-group O) gene [33]. We then characterized effects of these two interventions independently as well as in combination.

We began by looking at the effect of OKSM and Sen on stem cells in an intestinal stem cell (ISC) model [34, 35]. We chose to investigate phenotypic effects specifically in the digestive system of Drosophila (Supplementary Figure 1). As in mammals, the Drosophila gastric lining has a high turnover of cells which is enabled by stem cell pools that replenish the epithelia [34]. Age-dependent loss of stem cells and degradation of barrier function has been shown to contribute to age-dependent functional decline and mortality in Drosophila [36]. The Drosophila gut is composed of four cell types: enterocytes (ECs or absorptive cells), enteroendocrine (EEs or secretory cells), enteroblasts (EBs or transit amplifying cells) and intestinal stem cells (ISCs).

Oct 30, 2022

Advanced Aesthetics report

Posted by in categories: biological, life extension

When we think about aging, one of the first thoughts that comes to mind is wrinkled and sagging skin as well as the greying and loss of hair – simply put, the physical changes to appearance that we associated with advancing age. These changes are the most striking reflection of the underlying molecular aging processes that are happening inside our bodies.

The current size of the cosmetic industry alone highlights that physical appearance is important to people. As we continue developing strategies to improve longevity allowing us to live longer and in far better health, people will inevitably want a “youthful appearance” to match their newfound “youthful state”. Furthermore, as this report explains in more detail, aesthetic aging plays a significant and grossly underappreciated role in influencing the rate of biological aging.

It is fair to say that the cosmetic industry alone might not be enough to address aesthetic aging from a longevity point of view, as cosmetic products work to conceal the signs of aging. We need tactics that can address the underlying causes of skin and hair aging to achieve long-term benefits and halt the fine interlink between aesthetic aging and biological aging. This is where advanced aesthetics comes in.

Oct 30, 2022

Stem cell rejuvenation startup secures investment

Posted by in categories: biotech/medical, life extension

Biotech company Mogling Bio has successfully has completed its first seed investment round with a sole investor, Kizoo Technology Capital.

Mogling Bio is developing new pharmacological approaches to rejuvenate old stem cells of the hematopoietic (blood cell formation) system.

Ageing causes stem cells to lose their normal structure by increased activity of the protein CDC42. Normalising CDC42 activity can restore structure, order and functionality in those aged stem cells.

Oct 30, 2022

Turn.bio Announces Preliminary Results of a CAR-T Cell Study

Posted by in categories: genetics, life extension

Turn.bio has announced that its proprietary cellular reprogramming technology was able to significantly increase the proliferative and cytotoxic potential of premanufactured CAR-T cells in vitro.

Turn.bio, a developer of mRNA-based cellular reprogramming technologies, has announced preliminary results from its current trial. The announcement was made by the company’s co-founder, Prof. Vittorio Sebastiano, at the New Frontiers of RNA Nanotherapeutics conference at Houston Methodist Research Institute. These results show that the company’s proprietary Epigenetic Reprogramming of Aging (ERA) technology greatly increases the fitness of CAR-T cells, which are widely used in modern immunotherapy.

T cell exhaustion is a big problem.

Oct 30, 2022

Alex Zhavoronkov, ARDD2022: Pharma.AI platform for discovery and development of aging therapeutics

Posted by in categories: biotech/medical, internet, life extension, robotics/AI

The Aging and Drug Discovery Conference (ARDD) 2022 is pleased to present Alex Zhavoronkov from Insilico, with the talk A case study of the application of Pharma. AI platform for discovery and development of dual-purpose therapeutics targeting aging and disease.

Held in Copenhagen at the glorious Ceremonial Hall, this meeting gathers the most prominent figures of the aging and longevity research field, from scientists to clinicians, investors, developers, and everything in between. The fast growth of the conference is evidence of its great quality of it. In 2022 we had around 400 people on-site, and many others joined through the web.

Continue reading “Alex Zhavoronkov, ARDD2022: Pharma.AI platform for discovery and development of aging therapeutics” »

Oct 30, 2022

Quantifying Biological Age: Blood Test #6 in 2022

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

TruDiagnostic Discount Link (Epigenetic Testing)
CONQUERAGING!
https://bit.ly/3Rken0n.

Continue reading “Quantifying Biological Age: Blood Test #6 in 2022” »