Menu

Blog

Archive for the ‘genetics’ category: Page 487

Mar 12, 2016

Modified CRISPR Can Act As A Toggle Switch To Silence Genes

Posted by in categories: biotech/medical, genetics

CRISPR may have burst on the scene as a revolutionary gene editing tool, but it’s proving to be so much more. Tagging the targeting system with a gene silencing component could revolutionise stem cell work and enable a new level of genetic control we’ve never seen before.

A wonder tool

Efficient and accurate, CRISPR may be in the throes of a patent battle but it’s undoubtedly going down in history as a landmark in biological science. There may be other similar systems out there, but CRISPR makes things quick and comparatively cheap — which tends to revolutionise any industry.

Read more

Mar 12, 2016

Desktop Genetics: Now You Can Do Genetic Engineering Without Ever Entering a Lab

Posted by in categories: bioengineering, biotech/medical, genetics

CRISPR may be revolutionary; however, it’s not nearly as easy as it’s made out to be. But thanks to this company, individuals can alter the source code of life without ever needing to enter a lab.

A new genome editing technique is allowing us to alter DNA—the source code of life—with unprecedented precision. It is known as CRISPR, and with it, we can target and change a gene from any cell of any species without interfering with any other genes. If that’s not enough, we are able to edit these genes at just a fraction of the cost of previous methods.

Continue reading “Desktop Genetics: Now You Can Do Genetic Engineering Without Ever Entering a Lab” »

Mar 11, 2016

Scientist identifies mechanism to regenerate heart tissue

Posted by in categories: biotech/medical, genetics

The MDI Biological Laboratory has announced new discoveries about the mechanisms underlying the regeneration of heart tissue by Assistant Professor Voot P. Yin, Ph.D., which raise hope that drugs can be identified to help the body grow muscle cells and remove scar tissue, important steps in the regeneration of heart tissue.

Heart disease is a leading cause of death in the western world. Yin is using zebrafish to study the regeneration of tissue because of the amazing capacity of these common aquarium fish to regenerate the form and function of almost any body part, including heart, bone, skin and blood vessels, regardless of their age. In contrast, the adult mammalian cardiovascular system has limited regenerative capacity.

“Although zebrafish look quite different from humans, they share an astonishing 70 percent of their genetic material with humans, including genes important for the formation of new heart muscle,” Yin said. “These genes are conserved in humans and other mammals, but their activity is regulated differently after an injury like a .”

Continue reading “Scientist identifies mechanism to regenerate heart tissue” »

Mar 9, 2016

You can now sequence your entire genome for under $1,000

Posted by in categories: biotech/medical, genetics, health

It wasn’t all that long ago that the first human genome was sequenced – a massive, globally orchestrated scientific undertaking that took years and some US$3 billion to achieve.

Since then, rapid advancements in genetic technology and techniques have seen the cost and time required for genome sequencing drop dramatically, leading to this week’s remarkable announcement: the first whole genome sequencing service for consumers that costs less than $1,000.

At just $999, myGenome, from US-based genetics startup Veritas Genetics, is being billed by its makers as the first practical and affordable way for people to access unparalleled personal data on their individual genetic code. The company claims its personalised service offers an accessible way to keep tabs on your current health, keep you abreast of any potential future issues, and even know what inherited genetics you might pass onto your children.

Continue reading “You can now sequence your entire genome for under $1,000” »

Mar 7, 2016

Newly developed model of DNA sheds light on molecule’s flexibility

Posted by in categories: bioengineering, biotech/medical, computing, genetics, nanotechnology

Knowledge of how DNA folds and bends could offer new perspective on how it is handled within cells while also aiding in the design of DNA-based nano-scale devices, says a biomedical engineer at Texas A&M University whose new motion-based analysis of DNA is providing an accurate representation of the molecule’s flexibility.

The model, which is shedding new light on the physical properties of DNA, was developed by Wonmuk Hwang, associate professor in the university’s Department of Biomedical Engineering, and his Ph.D. student Xiaojing Teng. Hwang uses computer simulation and theoretical analysis to study biomolecules such as DNA that carry out essential functions in the human body. His latest model, which provides a motion-based analysis of DNA is detailed in the scientific journal ACS Nano. The full article can be accessed at http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06863.

In addition to housing the genetic information needed to build and maintain an organism, DNA has some incredibly interesting physical properties that make it ideal for the construction of nanodevices, Hwang notes. For example, the DNA encompassed within the nucleus of one human cell can extend to four feet when stretched out, but thanks to a number of folds, bends and twists, it remains in a space no bigger than one micron – a fraction of the width of a human hair. DNA also is capable of being programmed for self-assembly and disassembly, making it usable for building nano-mechanical devices.

Read more

Mar 7, 2016

Human-skin discovery suggests new anti-aging treatments

Posted by in categories: genetics, life extension

Layers in hairless skin (credit: Madhero88 and M.Komorniczak/Creative Commons)

For the first time, researchers have reported decreases in levels of a key molecule in aging human skin, which could lead to developing new anti-aging treatments and screening new compounds.

Components of a typical mitochondrion (credit: Kelvinsong/Creative Commons)

Continue reading “Human-skin discovery suggests new anti-aging treatments” »

Mar 5, 2016

It’s official: Native Americans and Siberians are cousins

Posted by in category: genetics

After more than a century of speculation, an international group of geneticists has conclusively proven that the Aztecs, Incas, and Iroquois are closely related to the peoples of Altai, the Siberian region that borders China and Mongolia.

Read more

Mar 4, 2016

The Scientific Reason You Love to Travel

Posted by in category: genetics

Your passion for travel may be genetic. Find out how, here.

Read more

Mar 4, 2016

Investigators Use WGS, Mutational Analysis to Characterize Drug-Resistant Salmonella Epidemiology

Posted by in categories: biotech/medical, genetics

The researchers sequenced bacteria samples sourced from all over the world to reconstruct a phylogenetic tree and learn how it evolved to have multidrug resistance.

Read more

Mar 4, 2016

Researcher develops technique for enhancing gene therapy

Posted by in categories: biotech/medical, genetics, neuroscience

Using his knowledge of how genes are organized and repaired in human cells, Dr. Graham Dellaire, Dalhousie Medical School’s Cameron Research Scientist in Cancer Biology, has developed a technique that could make gene therapy more effective and safer to use. His work was recently published in Nucleic Acids Research and Nature.

CRISPR, named 2015’s breakthrough discovery of the year, stands for “Clustered Regularly-Interspaced Short Palindromic Repeats.” It can accurately target and edit DNA, offering the potential to cure genetic diseases and find new treatments for cancer.

To apply CRISPR in non-dividing cells—such as those in muscle and brain tissue—researchers must first make them behave like cells that divide. They do this by turning on a cellular process called homologous recombination, which protects DNA; the recombination allows a cell’s genes to be manipulated and rearranged without the possibility of causing more harm than good.

Read more