Menu

Blog

Archive for the ‘evolution’ category: Page 139

Mar 25, 2017

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Posted by in category: evolution

We’ve discovered that evolution strategies (ES), an optimization technique that’s been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo), while overcoming many of RL’s inconveniences.

In particular, ES is simpler to implement (there is no need for backpropagation), it is easier to scale in a distributed setting, it does not suffer in settings with sparse rewards, and has fewer hyperparameters. This outcome is surprising because ES resembles simple hill-climbing in a high-dimensional space based only on finite differences along a few random directions at each step.

Read more

Mar 22, 2017

Of man and machine: The evolution of transhumanism

Posted by in categories: biotech/medical, evolution, transhumanism

Really good article by Dr. Kristin Kostick at Bayor College of Medicine. I’m excited to see #transhumanism spreading!


Dr. Kristin Kostick discusses LVADs, transhumanism, and how the integration of our bodies with technology can lead to longer, healthier lives.

Read more

Feb 13, 2017

Colonizing Mars could spark a new kind of frightening human evolution

Posted by in categories: evolution, space

Humans on Earth might not be allowed to meet Martians.

Read more

Feb 2, 2017

How breaks in DNA are repaired

Posted by in categories: biotech/medical, evolution, genetics

Interesting read especially as we look at various areas including synbio and super humans.


The results are significant for gene therapy procedures and for our understanding of cell transformation. A team of researchers from the biology department at TU Darmstadt has discovered that the processes for repairing DNA damage are far more complex than previously assumed. The ends of breaks in the double helix are not just joined, they are first changed in a meticulously choreographed process so that the original genetic information can be restored. The results have now been published in the research journal Molecular Cell.

DNA, the carrier of our genetic information, is exposed to continual damage. In the most serious damage of all, the DNA double-strand break, both strands of the double helix are broken and the helix is divided in two. If breaks like this are not efficiently repaired by the cell, important genetic information is lost. This is often accompanied by the death of the cell, or leads to permanent genetic changes and cell transformation. Over the course of evolution, ways to repair this DNA damage have developed, in which many enzymes work together to restore the genetic information with the maximum possible precision.

As it stands today, there are two main ways of repairing DNA double-strand breaks, which differ greatly in terms of their precision and complexity. The apparently simpler method, so-called non-homologous end joining, joins together the break ends as quickly as possible, without placing particular importance on accurately restoring the damaged genetic information. The second method of repair, homologous recombination, on the other hand, uses the exactly identical information present on a sister copy to repair the damaged DNA with great precision. However, such sister copies are only present in dividing cells, as the genetic information has to be duplicated before the cells divide. But most cells in the human body do not undergo division, which therefore assigns them to the apparently more inaccurate method of end joining.

Read more

Jan 31, 2017

Earth And Moon May Be On Long-Term Collision Course

Posted by in categories: energy, evolution, space

Nothing to fret about, but it is interesting that our Earth and Moon may end up colliding in the end. That’s long after our Sun has expanded as a Red Giant, but the implications for other earth-moon type systems are interesting.


For now, our anomalously large Moon is spinning away from us at a variable rate of 3.8 centimeters per year. But, in fact, the Earth and Moon may be on a very long-term collision course — one that incredibly some 65 billion years from now, could result in a catastrophic lunar inspiral.

“The final end-state of tidal evolution in the Earth-Moon system will indeed be the inspiral of the Moon and its subsequent collision and accretion onto Earth,” Jason Barnes, a planetary scientist at the University of Idaho, told me.

Continue reading “Earth And Moon May Be On Long-Term Collision Course” »

Jan 20, 2017

Making aptamers with biology’s help

Posted by in categories: biological, engineering, evolution

Scientists simulate evolution in the lab by introducing mutations iteratively into biomolecules such as nucleic acids and selecting for desired properties. When carrying this process out specifically on RNA molecules, they can evolve the RNAs to bind specific small molecules. But many of these so-called aptamers don’t bind well to their targets when put inside cells because they don’t fold into stable structures.

“As we solved the structures of naturally occurring aptamers, we noticed they had much more complex secondary and tertiary structures” than versions made in the lab, says Robert T. Batey of the University of Colorado, Boulder. “So we decided to use these naturally occurring RNA folds as starting points” for producing more stable artificial aptamers.

To prove their concept, Batey and coworkers used RNA sequences from naturally occurring ribozymes and riboswitches as scaffolds to evolve aptamers that bind amino acids and other small molecules used to make neurotransmitters (Nat. Chem. Biol. 2017, DOI: 10.1038/nchembio.2278). The resulting aptamers are selective for these precursor molecules over structurally similar amino acids and the neurotransmitters themselves.

Read more

Jan 17, 2017

Messy Chemistry, Evolving Rocks, and the Origin of Life

Posted by in categories: chemistry, evolution

Noted synthetic life researcher Steven Benner of Foundation for Applied Molecular Evolution is fond of pointing out that gooey tars are the end product of too many experiments in his field. His widely-held view is that the tars, made out of chemicals known to be important in the origin of life, are nonetheless a dead end to be avoided when trying to work out how life began.

But in the changing world of origins of life research, others are asking whether those messy tars might not be a breeding ground for the origin of life, rather than an obstacle to it.

One of those is chemist and astrobiologist Irena Mamajanov of the Earth-Life Science Institute (ELSI) in Tokyo. As she recently explained during an institute symposium, scientists know that tar-like substances were present on early Earth, and that she and her colleagues are now aggressively studying their potential role in the prebiotic chemical transformations that ultimately allowed life to emerge out of non-life.

Continue reading “Messy Chemistry, Evolving Rocks, and the Origin of Life” »

Jan 14, 2017

Body-Pierced Gadget Turns You Into a Human Compass

Posted by in categories: biotech/medical, evolution, internet, neuroscience, transhumanism

Liviu Babitz is not content waiting around for evolution to improve upon his human form. Like other transhumanists, Babitz believes that science and technology can take a person’s intelligence, physical performance and psychological state to the next level, all in less than the span of a single lifetime.

To that end, he helped develop North Sense, a small silicone gadget that detects magnetic north. This is not a GPS device, nor a tracker. It’s not even connected to the Internet nor any other network. This is a new sensory organ designed to be pierced to a person’s body and vibrate each time the wearer faces magnetic north.

The idea is that over time, the brain will assimilate the vibration into the everyday human experience, enhancing it. That will open a person up to a world that exists beyond his or her own current capabilities.

Continue reading “Body-Pierced Gadget Turns You Into a Human Compass” »

Jan 9, 2017

How CRISPR gene editing puts scientists in the driver’s seat of evolution

Posted by in categories: bioengineering, biotech/medical, evolution

CRISPR can help us end many diseases and guide evolution and is probably one of the most powerful tools we have recently added to our toolkit.


Imagine you could edit a mouse’s genes to be resistant to Lyme Disease. The mouse would breed and evolution would take its course, leading to the extinction of the disease. That’s the vision for scientists developing CRISPR, technology that allows scientists to rewrite the code of life. William Brangham talks to Michael Specter who wrote about CRISPR for The New Yorker.

Read more

Jan 7, 2017

Peter Diamandis Thinks We’re Evolving Toward “Meta-Intelligence”

Posted by in categories: biological, evolution, neuroscience, Peter Diamandis

In Brief

  • Peter Diamandis, founder and chairman of the XPRIZE Foundation, thinks the human species is headed for an evolutionary transformation.
  • The evolution of life has slowly unfolded over 3.5 billion years; but its pace has rapidly increased in recent years. Diamandis believes this heralds the next, exciting stages of human evolution.

In the next 30 years, humanity is in for a transformation the likes of which we’ve never seen before—and XPRIZE Foundation founder and chairman Peter Diamandis believes that this will give birth to a new species. Diamandis admits that this might sound too far out there for most people. He is convinced, however, that we are evolving towards what he calls “meta-intelligence,” and today’s exponential rate of growth is one clear indication.

In an essay for Singularity Hub, Diamandis outlines the transformative stages in the multi-billion year pageant of evolution, and takes note of what the recent increasing “temperature” of evolution—a consequence of human activity—may mean for the future. The story, in a nutshell, is this—early prokaryotic life appears about 3.5 billion years ago (bya), representing perhaps a symbiosis of separate metabolic and replicative mechanisms of “life;” at 2.5 bya, eukaryotes emerge as composite organisms incorporating biological “technology” (other living things) within themselves; at 1.5 bya, multicellular metazoans appear as eukaryotes are yoked together in cooperative colonies; and at 400 million years ago, vertebrate fish species emerge onto land to begin life’s adventure beyond the seas.

Continue reading “Peter Diamandis Thinks We’re Evolving Toward ‘Meta-Intelligence’” »