Menu

Blog

Archive for the ‘engineering’ category: Page 56

May 9, 2023

A new twist on chirality: Researchers extend the concept of directionality and propose a new class of materials

Posted by in categories: engineering, quantum physics

It is often desirable to restrict flows—whether of sound, electricity, or heat—to one direction, but naturally occurring systems almost never allow this. However, unidirectional flow can indeed be engineered under certain conditions, and the resulting systems are said to exhibit chiral behavior.

The concept of chirality is traditionally limited to single direction flows in one dimension. In 2021, however, researchers working with Taylor Hughes, a professor of physics at the University of Illinois Urbana-Champaign, introduced a theoretical extension that can account for more intricate chiral flows in two dimensions.

Now, a team led by Hughes and Gaurav Bahl, a UIUC professor of mechanical science & engineering, has experimentally realized this extension. As the researchers reported in Nature Communications, they constructed a topological circuit network, a system of electronics that simulates the microscopic behavior of quantum materials, to explore the entirely new behaviors predicted by this extended, or higher-rank chirality.

May 9, 2023

Metamaterial Concrete: Reinventing the Most Widely Used Construction Material

Posted by in categories: energy, engineering, sustainability

Engineers at the University of Pittsburgh are bringing concrete into the 21st century by reimagining its design. Concrete, which has its roots dating back to the Roman Empire, remains the most widely utilized material in the construction industry.

A new study presents a concept for the development of smart civil infrastructure systems with the introduction of metamaterial concrete. The research presents a concept for lightweight and mechanically-tunable concrete systems with integrated energy harvesting and sensing capabilities.

“Modern society has been using concrete in construction for hundreds of years, following its original creation by the ancient Romans,” said Amir Alavi, assistant professor of civil and environmental engineering at Pitt, who is the corresponding author on the study. “Massive use of concrete in our infrastructure projects implies the need for developing a new generation of concrete materials that are more economical and environmentally sustainable, yet offer advanced functionalities. We believe that we can achieve all of these goals by introducing a metamaterial paradigm into the development of construction materials.”

May 8, 2023

MIT Engineers Revolutionize Semiconductor Chip Technology With Atom-Thin Transistors

Posted by in categories: computing, education, engineering, particle physics

A new low-temperature growth and fabrication technology allows the integration of 2D materials directly onto a silicon circuit, which could lead to denser and more powerful chips.

Researchers from MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

May 7, 2023

Quantum lidar prototype acquires real-time 3D images while fully submerged underwater

Posted by in categories: engineering, particle physics, quantum physics, security

For the first time, researchers have demonstrated a prototype lidar system that uses quantum detection technology to acquire 3D images while submerged underwater. The high sensitivity of this system could allow it to capture detailed information even in extremely low-light conditions found underwater.

“This technology could be useful for a wide range of applications,” said research team member Aurora Maccarone, a Royal Academy of Engineering research fellow from Heriot-Watt University in the United Kingdom. “For example, it could be used to inspect underwater installations, such as underwater wind farm cables and the submerged structure of the turbines. Underwater can also be used for monitoring or surveying submerged archaeology sites and for security and defense applications.”

Continue reading “Quantum lidar prototype acquires real-time 3D images while fully submerged underwater” »

May 6, 2023

Molecular Magic — Researchers Develop Lightweight 2D Material Stronger Than Steel

Posted by in categories: engineering, nanotechnology, particle physics

2D materials, which are finer than even the thinnest onionskin paper, have garnered significant attention due to their remarkable mechanical attributes. However, these properties dissapate when the materials are layered, thus restricting their practical applications.

“Think of a graphite pencil,” says Teng Li, Keystone Professor at the University of Maryland’s (UMD) Department of Mechanical Engineering. “Its core is made of graphite, and graphite is composed of many layers of graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

May 6, 2023

Dr. Kathryn Huff, Ph.D. — Assistant Secretary, Office of Nuclear Energy, U.S. Department of Energy

Posted by in categories: economics, engineering, government, nuclear energy, physics, policy, security, supercomputing

Advancing Nuclear Energy Science And Technology For U.S. Energy, Environmental And Economic Needs — Dr. Katy Huff, Ph.D. — Assistant Secretary, U.S. Department of Energy Office of Nuclear Energy, U.S. Department of Energy.


Dr. Kathryn Huff, Ph.D. (https://www.energy.gov/ne/person/dr-kathryn-huff) is Assistant Secretary, Office of Nuclear Energy, U.S. Department of Energy, where she leads their strategic mission to advance nuclear energy science and technology to meet U.S. energy, environmental, and economic needs, both realizing the potential of advanced technology, and leveraging the unique role of the government in spurring innovation.

Continue reading “Dr. Kathryn Huff, Ph.D. — Assistant Secretary, Office of Nuclear Energy, U.S. Department of Energy” »

May 5, 2023

Scientists Claim Solar Sails May Be the Future of Space Exploration

Posted by in categories: engineering, satellites

They’re not a common thing right now, but the technology of solar sails has recently had some success. In particular, it’s had success in exactly the way JPL has been proposing it be used more—in combination with CubeSats. From 2019 to 2022, a crowdfunded CubeSat project called LightSail 2 run by The Planetary Society “successfully used sunlight alone to change its orbit around Earth,” according to the Society’s website. And just recently, NASA launched a sail-powered CubeSat called Near-Earth Asteroid (NEA) Scout as part of the Artemis I mission.

So, with recent functional missions to point to and inside knowledge of what it takes to complete a successful space mission—from engineering marvels to monetary considerations—the team from JPL is pitching we make a lot more use of this pairing through what they call the Sundiver concept.

“Together, small satellites with lightweight instruments and solar sails offer affordable access to deep regions of the solar system, also making it possible to realize hard-to-reach trajectories that are not constrained to the ecliptic plane,” the preprint reads. “Combining these two technologies can drastically reduce travel times within the solar system, while delivering robust science.”

May 4, 2023

Experiment demonstrates continuously operating optical fiber made of thin air

Posted by in categories: computing, engineering, physics

Great, until the mention of “directed energy”…


Researchers at the University of Maryland (UMD) have demonstrated a continuously operating optical fiber made of thin air.

The most common optical fibers are strands of glass that tightly confine light over long distances. However, these fibers are not well-suited for guiding extremely high-power beams due to glass damage and scattering of laser energy out of the fiber. Additionally, the need for a physical support structure means that glass fiber must be laid down long in advance of light signal transmission or collection.

Continue reading “Experiment demonstrates continuously operating optical fiber made of thin air” »

May 2, 2023

Using plasma against toxic PFAS chemicals

Posted by in categories: biotech/medical, chemistry, engineering, food

Harmful PFAS chemicals can now be detected in many soils and bodies of water. Removing them using conventional filter techniques is costly and almost infeasible. Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB are now successfully implementing a plasma-based technology in the AtWaPlas joint research project.

Contaminated water is fed into a combined glass and stainless steel cylinder where it is then treated with ionized gas, i.e., plasma. This reduces the PFAS molecular chains, allowing the to be removed at a low cost.

Per-and polyfluoroalkyl substances (PFAS) have many special properties. As they are thermally and chemically stable as well as resistant to water, grease and dirt, they can be found in a large number of everyday products: Pizza boxes and baking paper are coated with them, for example, and shampoos and creams also contain PFAS. In industry they serve as extinguishing and wetting agents, and in agriculture they are used in plant protection products.

Apr 30, 2023

Two-component system could offer a new way to halt internal bleeding

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

MIT engineers have designed a two-component system that can be injected into the body and help form blood clots at the sites of internal injury. These materials, which mimic the way that the body naturally forms clots, could offer a way to keep people with severe internal injuries alive until they can reach a hospital.

In a mouse model of internal injury, the researchers showed that these components—a nanoparticle and a polymer—performed significantly better than hemostatic that were developed earlier.

“What was especially remarkable about these results was the level of recovery from severe injury we saw in the animal studies. By introducing two complementary systems in sequence it is possible to get a much stronger clot,” says Paula Hammond, an MIT Institute Professor, the head of MIT’s Department of Chemical Engineering, a member of the Koch Institute for Integrative Cancer Research, and one of the senior authors of a paper on the study.

Page 56 of 258First5354555657585960Last