Menu

Blog

Archive for the ‘engineering’ category: Page 155

Aug 22, 2019

Self-assembled membrane with water-continuous transport pathways for precise nanofiltration

Posted by in categories: biotech/medical, chemistry, engineering, food, nanotechnology, sustainability

Self-assembled materials are attractive for next-generation materials, but their potential to assemble at the nanoscale and form nanostructures (cylinders, lamellae etc.) remains challenging. In a recent report, Xundu Feng and colleagues at the interdisciplinary departments of chemical and environmental engineering, biomolecular engineering, chemistry and the center for advanced low-dimension materials in the U.S., France, Japan and China, proposed and demonstrated a new approach to prevent the existing challenges. In the study, they explored size-selective transport in the water-continuous medium of a nanostructured polymer template formed using a self-assembled lyotropic H1 (hexagonal cylindrical shaped) mesophase (a state of matter between liquid and solid). They optimized the mesophase composition to facilitate high-fidelity retention of the H1 structure on photoinduced crosslinking.

The resulting nanostructured polymer material was mechanically robust with internally and externally crosslinked nanofibrils surrounded by a continuous aqueous medium. The research team fabricated a with size selectivity at the 1 to 2 nm length scale and water permeabilities of ~10 liters m−2 hour−1 bar−1 μm. The membranes displayed excellent anti-microbial properties for practical use. The results are now published on Science Advances and represent a breakthrough for the potential use of self-assembled membrane-based nanofiltration in practical applications of water purification.

Membrane separation for filtration is widely used in diverse technical applications, including seawater desalination, gas separation, food processing, fuel cells and the emerging fields of sustainable power generation and distillation. During nanofiltration, dissolved or suspended solutes ranging from 1 to 10 nm in size can be removed. New nanofiltration membranes are of particular interest for low-cost treatment of wastewaters to remove organic contaminants including pesticides and metabolites of pharmaceutical drugs. State-of-the-art membranes presently suffer from a trade-off between permeability and selectivity where increased permeability can result in decreased selectivity and vice-versa. Since the trade-off originated from the intrinsic structural limits of conventional membranes, materials scientists have incorporated self-assembled materials as an attractive solution to realize highly selective separation without compromising permeability.

Aug 22, 2019

Giving Mars a Magnetosphere

Posted by in categories: biological, engineering, environmental, mathematics, space, sustainability

Any future colonization efforts directed at the Mars all share one problem in common; their reliance on a non-existent magnetic field. Mars’ magnetosphere went dark about 4 billion years ago when it’s core solidified due to its inability to retain heat because of its small mass. We now know that Mars was quite Earth-like in its history. Deep oceans once filled the now arid Martian valleys and a thick atmosphere once retained gasses which may have allowed for the development of simple life. This was all shielded by Mars’ prehistoric magnetic field.

When Mars’ magnetic line of defense fell, much of its atmosphere was ripped away into space, its oceans froze deep into the red regolith, and any chance for life to thrive there was suffocated. The reduction of greenhouse gasses caused Mars’ temperature to plummet, freezing any remaining atmosphere to the poles. Today, Mars is all but dead. Without a magnetic field, a lethal array of charged particles from the Sun bombards Mars’ surface every day threatening the potential of hosting electronic systems as well as biological life. The lack of a magnetic field also makes it impossible for Mars to retain an atmosphere or an ozone layer, which are detrimental in filtering out UV and high energy light. This would seem to make the basic principles behind terraforming the planet completely obsolete.

I’ve read a lot of articles about the potential of supplying Mars with an artificial magnetic field. By placing a satellite equipped with technology to produce a powerful magnetic field at Mars L1 (a far orbit around Mars where gravity from the Sun balances gravity from Mars, so that the satellite always remains between Mars and the Sun), we could encompass Mars in the resulting magnetic sheath. However, even though the idea is well understood and written about, I couldn’t find a solid mathematical proof of the concept to study for actual feasibility. So I made one!

Aug 21, 2019

A 127-year-old physics riddle solved

Posted by in categories: computing, engineering, physics

He solved a 127-year-old physics problem on paper and proved that off-centered boat wakes could exist. Five years later, practical experiments proved him right.

“Seeing the pictures appear on the computer screen was the best day at work I’ve ever had,” says Simen Ådnøy Ellingsen, an associate professor at NTNU’s Department of Energy and Process Engineering.

That was the day that Ph.D. candidate Benjamin Keeler Smeltzer and master’s student Eirik Æsøy had shown in the lab that Ellingsen was right and sent him the photos from the experiment. Five years ago, Ellingsen had challenged accepted knowledge from 1887, armed with a pen and paper, and won.

Aug 21, 2019

Elon Musk back to promoting bombing Mars with nuclear weapons

Posted by in categories: Elon Musk, engineering, environmental, military, space

SpaceX CEO Elon Musk not only wants to explore Mars, he wants to ‘nuke’ it.

In a tweet this week, Musk reiterated calls to ‘Nuke Mars!’ adding that t-shirts are ‘coming soon.’

Continue reading “Elon Musk back to promoting bombing Mars with nuclear weapons” »

Aug 18, 2019

Terraforming Mars in 50 Years with Large Orbital Mirrors, Bacteria and Factories

Posted by in categories: Elon Musk, energy, engineering, environmental, space

The McKay-Zubrin plan for terraforming Mars in 50 years was cited by Elon Musk.

Orbital mirrors with 100 km radius are required to vaporize the CO2 in the south polar cap. If manufactured of solar sail-like material, such mirrors would have a mass on the order of 200,000 tonnes. If manufactured in space out of asteroidal or Martian moon material, about 120 MWe-years of energy would be needed to produce the required aluminum.

The use of orbiting mirrors is another way for hydrosphere activation. For example, if the 125 km radius reflector discussed earlier for use in vaporizing the pole were to concentrate its power on a smaller region, 27 TW would be available to melt lakes or volatilize nitrate beds. This is triple the power available from the impact of a 10 billion tonne asteroid per year, and in all probability would be far more controllable. A single such mirror could drive vast amounts of water out of the permafrost and into the nascent Martian ecosystem very quickly. Thus while the engineering of such mirrors may be somewhat grandiose, the benefits to terraforming of being able to wield tens of TW of power in a controllable way would be huge.

Aug 17, 2019

Samsung Releasing Smartphone Using Graphene Battery for 15–30 Minute Charging in 2020

Posted by in categories: biological, engineering, mobile phones, transportation

Samsung will release a smartphone using new fast chargoing graphene battery technology that can fully charge in under 30 minutes according to gadgets leaker Evan Blass (@EVLeaks).

Samsung will release a smartphone powered by new graphene battery technology that can fully charge in under 30 minutes in 2020, or possibly 2021. This will be three to five times faster than today’s lithium-ion batteries which take about 90 minutes to charge.

In 2017, Samsung Advanced Institute of Technology (SAIT) announced they had developed a “graphene ball,” a unique battery material that enables a 45% increase in capacity, and five times faster-charging speeds than standard lithium-ion batteries. The breakthrough provides promise for the next generation secondary battery market, particularly related to mobile devices and electric vehicles. In its research, SAIT collaborated closely with Samsung SDI as well as a team from Seoul National University’s School of Chemical and Biological Engineering.

Aug 17, 2019

Robotic Platform Powered by AI Automates Molecule Production

Posted by in categories: engineering, robotics/AI

Guided by artificial intelligence and powered by a robotic platform, a system developed by MIT researchers moves a step closer to automating the production of small molecules. Images: Connor Coley, Felice Frankel.

The system, described in the August 8 issue of Science, could free up bench chemists from a variety of routine and time-consuming tasks, and may suggest possibilities for how to make new molecular compounds, according to the study co-leaders Klavs F. Jensen, the Warren K. Lewis Professor of Chemical Engineering, and Timothy F. Jamison, the Robert R. Taylor Professor of Chemistry and associate provost at MIT.

The technology “has the promise to help people cut out all the tedious parts of molecule building,” including looking up potential reaction pathways and building the components of a molecular assembly line each time a new molecule is produced, says Jensen.

Aug 14, 2019

Earthworm-Inspired Robot Wins $10,000 Student Scholarship

Posted by in categories: engineering, robotics/AI

THE INSTITUTE Teenager Ari Firester watched on television last year as members of a youth soccer team were saved from a flooded cave in Chiang Rai Province, Thailand. The two-week-long effort, which left one rescuer dead, inspired Firester to create a technology that might prevent such a tragedy from occurring again.

Firester, 16, a junior at Hunter College High School in New York City, created “Wormbot,” an earthworm-inspired robot capable of maneuvering in narrow spaces. The project was displayed at Intel’s annual International Science and Engineering Fair, held in May in Phoenix. His invention earned him the US $10,000 IEEE Presidents’ Scholarship, which is given at the fair.

Controlled by an Arduino microcontroller and built with off-the-shelf items, the robot makes wormlike movements by using eight retractable claws along its length to grip its surroundings and prevent it from slipping. The modular robot is powered by compressed air. The control and power components are connected to the robot through a thin, plastic air tube. By using inflatable actuators, its body can be lengthened, shortened, or bent.

Aug 9, 2019

NSA’s reverse-engineering malware tool, Ghidra, to get new features to save time, boost accuracy

Posted by in categories: cybercrime/malcode, engineering, privacy, robotics/AI

Just five months ago at the RSA conference, the NSA released Ghidra, a piece of open source software for reverse-engineering malware. It was an unusual move for the spy agency, and it’s sticking to its plan for regular updates — including some based on requests from the public.

In the coming months, Ghidra will get support for Android binaries, according to Brian Knighton, a senior researcher for the NSA, and Chris Delikat, a cyber team lead in its Research Directorate, who previewed details of the upcoming release with CyberScoop. Knighton and Delikat are discussing their plans at a session of the Black Hat security conference in Las Vegas Thursday.

Before the Android support arrives, a version 9.1 will include new features intended to save time for users and boost accuracy in reverse-engineering malware — enhancements that will come from features such as processor modules, new support for system calls and the ability to conduct additional editing, known as sleigh editing, in the Eclipse development environment.

Aug 8, 2019

Manipulating brain cells

Posted by in categories: biotech/medical, engineering, mobile phones, nanotechnology, neuroscience

Researchers have developed a soft neural implant that can be wirelessly controlled using a smartphone. It is the first wireless neural device capable of indefinitely delivering multiple drugs and multiple colour lights, which neuroscientists believe can speed up efforts to uncover brain diseases such as Parkinson’s, Alzheimer’s, addiction, depression, and pain. A team under Professor Jae-Woong Jeong from the School of Electrical Engineering at KAIST and his collaborators have invented a device that can control neural circuits using a tiny brain implant controlled by a smartphone. The device, using Lego-like replaceable drug cartridges and powerful, low-energy Bluetooth, can target specific neurons of interest using drugs and light for prolonged periods. This study was published in Nature Biomedical Engineering.

“This novel device is the fruit of advanced electronics design and powerful micro and nanoscale engineering,” explained Professor Jeong. “We are interested in further developing this technology to make a brain implant for clinical applications.”