Menu

Blog

Archive for the ‘engineering’ category: Page 125

Mar 23, 2021

Reverse engineering the cognitive brain

Posted by in categories: computing, engineering, nanotechnology, neuroscience

Circa 2013


One of the greatest aspirations of the human mind has been to realize machines that surpass its cognitive intelligence. The rapid expansion in computing power, about to exceed the equivalent of the human brain, has yet to produce such a machine. The article by Neftci et al. in PNAS (1) offers a refreshing and humbling reminder that the brain’s cognition does not arise from exacting digital precision in high-performance computing, but rather emerges from an extremely efficient and resilient collective form of computation extending over very large ensembles of sluggish, imprecise, and unreliable analog components. This observation, first made by John von Neumann in his final opus (2), continues to challenge scientists and engineers several decades later in figuring and reproducing the mechanisms underlying brain-like forms of cognitive computing.

Related developments are currently unfolding in collaborative initiatives engaging scientists and engineers, on a grander scale, in advancing neuroscience toward understanding the brain. In parallel with the Human Brain Project in Europe, the Brain Research through Advancing Innovative Neurotechnologies Initiative promises groundbreaking advances in enabling tools for revolutionizing neuroscience by developing nanotechnology to probe brain function at greatly increased spatial and temporal detail. Engineers are poised to contribute even further in revolutionizing such developments in neuroscience. In this regard it is helpful to relate the inquisitive nature of science—analysis—to the constructive power of engineering, synthesis.

Mar 23, 2021

Portable nuclear reactor project moves forward at Pentagon

Posted by in categories: engineering, government, military, nuclear energy

The two companies, along with Westinghouse Government Services, were each given preliminary contracts of less than $15 million in March 2020 to begin design work. The final design is due to the Strategic Capabilities Office in 2022, at which point the Defense Department will make a decision on whether to move forward with testing the systems.

“We are thrilled with the progress our industrial partners have made on their designs,” Jeff Waksman, Project Pele’s program manager, said in a statement. “We are confident that by early 2022 we will have two engineering designs matured to a sufficient state that we will be able to determine suitability for possible construction and testing.”

The Pentagon has long eyed nuclear power as a potential way to reduce both its energy cost and its vulnerability in its dependence on local energy grids. According to a news release, the Defense Department uses “approximately 30 Terawatt-hours of electricity per year and more than 10 million gallons of fuel per day.”

Mar 22, 2021

Plasmonic nanoreactors regulate selective oxidation via energetic electrons and nanoconfined thermal fields

Posted by in categories: chemistry, energy, engineering, nanotechnology

When optimizing catalysis in the lab, product selectivity and conversion efficiency are primary goals for materials scientists. Efficiency and selectivity are often mutually antagonistic, where high selectivity is accompanied by low efficiency and vice versa. Increasing the temperature can also change the reaction pathway. In a new report, Chao Zhan and a team of scientists in chemistry and chemical engineering at the Xiamen University in China and the University of California, Santa Barbara, U.S., constructed hierarchical plasmonic nanoreactors to show nonconfined thermal fields and electrons. The combined attributes uniquely coexisted in plasmonic nanostructures. The team regulated parallel reaction pathways for propylene partial oxidation and selectively produced acrolein during the experiments to form products that are different from thermal catalysis. The work described a strategy to optimize chemical processes and achieve high yields with high selectivity at lower temperature under visible light illumination. The work is now published on Science Advances.

Catalysts

Ideal catalytic processes can produce desired target products without undesirable side effects under cost-effective conditions, although such conditions are rarely achieved in practice. For instance, high efficiency and high selectivity are antagonistic goals, where a relatively high temperature is often necessary to overcome the large barrier of oxygen activation to achieve high reactant conversion. Increasing the functional temperature can also lead to overoxidized and therefore additional byproducts. As a result, researchers must compromise between selectivity and efficiency. For instance, a given molecule typically requires diverse catalysts to generate different products, where each catalyst has different efficiency and selectivity. To circumvent any limitations, they can use surface plasmons (SPs) to redistribute photons, electrons and heat energy in space and time.

Mar 22, 2021

Yoav Landsman, Co-Founder, Moonscape — Sustainable And Responsible Lunar Services And Transportation

Posted by in categories: business, education, engineering, satellites, sustainability

Sustainable and responsible lunar services and transportation — yoav landsman, co-founder, moonscape.


Yoav Landsman is the Co-founder of Moonscape (https://www.moonscape.space/), a lunar services and payload transportation company, that is focused on providing necessary services like communication relay and cutting-edge imaging, while delivering payloads to the Moon.

Continue reading “Yoav Landsman, Co-Founder, Moonscape — Sustainable And Responsible Lunar Services And Transportation” »

Mar 19, 2021

Researchers help keep pace with Moore’s Law

Posted by in categories: computing, engineering

Progress in the field of integrated circuits is measured by matching, exceeding, or falling behind the rate set forth by Gordon Moore, former CEO and co-founder of Intel, who said the number of electronic components, or transistors, per integrated circuit would double every year. That was more than 50 years ago, and surprisingly his prediction, now called Moore’s Law, came true.

In recent years, it was thought that the pace had slowed; one of the biggest challenges of putting more circuits and power on a smaller chip is managing heat.

A multidisciplinary group that includes Patrick E. Hopkins, a professor in the University of Virginia’s Department of Mechanical and Aerospace Engineering, and Will Dichtel, a professor in Northwestern University’s Department of Chemistry, is inventing a new class of material with the potential to keep chips cool as they keep shrinking in size—and to help Moore’s Law remain true. Their work was recently published in Nature Materials.

Mar 18, 2021

What’s Really Holding Back Flying Cars

Posted by in categories: engineering, transportation

We were all promised the future would be like the Jetsons, with push-button flying cars. What happened? Well, multiple firms are developing flying cars right now, but the inhibiting factor for widespread adoption may not be in the hardware or software: but due to an unlikely source: insurance. These vehicles are expected to be radically different from either helicopters or fixed wing aircraft, and as such insurance industry has little baseline data on which to assess risk. The obvious implications of vehicle falling a crowded downtown street make this a serious issue. What can be done? Jim has a definite opinion on the subject.

Manufacturing veteran James Anderton expresses his compelling and unique opinions about the state of the manufacturing sector. He shares his thoughts and insights to help engineering and manufacturing professionals navigate through the challenges of world events, the blending old with new technologies, evolving processes, gaps in skilled labour, in an effort to help maximize productivity of their daily operations.

Continue reading “What’s Really Holding Back Flying Cars” »

Mar 9, 2021

‘Wearable microgrid’ uses the human body to sustainably power small gadgets

Posted by in categories: biotech/medical, engineering, wearables

Nanoengineers at the University of California San Diego have developed a “wearable microgrid” that harvests and stores energy from the human body to power small electronics. It consists of three main parts: sweat-powered biofuel cells, motion-powered devices called triboelectric generators, and energy-storing supercapacitors. All parts are flexible, washable and can be screen printed onto clothing.

The technology, reported in a paper published Mar. 9 in Nature Communications, draws inspiration from community microgrids.

“We’re applying the concept of the microgrid to create systems that are powered sustainably, reliably and independently,” said co-first author Lu Yin, a nanoengineering Ph.D. student at the UC San Diego Jacobs School of Engineering. “Just like a city microgrid integrates a variety of local, renewable power sources like wind and solar, a wearable microgrid integrates devices that locally harvest energy from different parts of the body, like sweat and movement, while containing .”

Mar 8, 2021

Bacteria Reprogrammed to Make Designer Molecule Used in Pharmaceutical Drugs

Posted by in categories: biotech/medical, chemistry, engineering, genetics

Envisioning an animal-free drug supply, scientists have — for the first time — reprogrammed a common bacterium to make a designer polysaccharide molecule used in pharmaceuticals and nutraceuticals. Published on March 22021, in Nature Communications, the researchers modified E. coli to produce chondroitin sulfate, a drug best known as a dietary supplement to treat arthritis that is currently sourced from cow trachea.

Genetically engineered E. coli is used to make a long list of medicinal proteins, but it took years to coax the bacteria into producing even the simplest in this class of linked sugar molecules — called sulfated glycosaminoglycans — that are often used as drugs and nutraceuticals…

“It’s a challenge to engineer E. coli to produce these molecules, and we had to make many changes and balance those changes so that the bacteria will grow well,” said Mattheos Koffas, lead researcher and a professor of chemical and biological engineering at Rensselaer Polytechnic Institute. “But this work shows that it is possible to produce these polysaccharides using E. coli in animal-free fashion, and the procedure can be extended to produce other sulfated glycosaminoglycans.”

Mar 8, 2021

Twistoptics: A New, Efficient Way to Control Optical Nonlinearity

Posted by in categories: biotech/medical, chemistry, cybercrime/malcode, engineering, quantum physics, solar power

Columbia researchers engineer first technique to exploit the tunable symmetry of 2D materials for nonlinear optical applications, including laser, optical spectroscopy, imaging, and metrology systems, as well as next-generation optical quantum information processing and computing.

Nonlinear optics, a study of how light interacts with matter, is critical to many photonic applications, from the green laser pointers we’re all familiar with to intense broadband (white) light sources for quantum photonics that enable optical quantum computing, super-resolution imaging, optical sensing and ranging, and more. Through nonlinear optics, researchers are discovering new ways to use light, from getting a closer look at ultrafast processes in physics, biology, and chemistry to enhancing communication and navigation, solar energy harvesting, medical testing, and cybersecurity.

Columbia Engineering researchers report that they developed a new, efficient way to modulate and enhance an important type of nonlinear optical process: optical second harmonic generation — where two input photons are combined in the material to produce one photon with twice the energy — from hexagonal boron nitride through micromechanical rotation and multilayer stacking. The study was published online on March 32021, by Science Advances.

Mar 7, 2021

Pivotal Discovery Could Open New Field of Quantum Technology Called “Magnonics”

Posted by in categories: engineering, quantum physics

University of Chicago, Argonne scientists tame photon-magnon interactions In a first-of-its-kind discovery, researchers in the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory announced they can directly control the interactions between two types of q.