Menu

Blog

Archive for the ‘energy’ category: Page 6

Sep 8, 2024

Catalyst design boosts performance of anion-exchange-membrane fuel cells

Posted by in categories: chemistry, energy, sustainability, transportation

Fuel cells are energy-conversion solutions that generate electricity via electrochemical reactions without combustion, thus not contributing to the pollution of air on Earth. These cells could power various technologies, ranging from electric vehicles to portable chargers and industrial machines.

Despite their advantages, many fuel cell designs introduced to date rely on expensive materials and precious metal catalysts, which limits their widespread adoption. Anion-exchange-membrane fuel cells (AEMFCs) could help to tackle these challenges, as they are based on Earth-abundant, low-cost catalysts and could thus be more affordable.

In recent years, many research groups worldwide have been designing and testing new AEMFCs. While some existing devices achieved promising results, most of the non-precious metals serving as catalysts were found to be prone to self-oxidation, which causes the irreversible failure of the cells.

Sep 7, 2024

New titanium-nickel alloy could enable shape-shifting aircraft

Posted by in categories: energy, transportation

The material displays characteristics across a wide temperature range aiding versatile applications:


There is always a trade-off when balancing strength and flexibility. One is achieved at the cost of the other. While a flexible, shape-shifting aircraft can deliver benefits for higher energy efficiency and faster transportation, these cannot be achieved by risking the safety of the passengers using a material that lacks proper strength.

Continue reading “New titanium-nickel alloy could enable shape-shifting aircraft” »

Sep 6, 2024

From Shale Gas to Sustainable Water: New Methods for Recovering High-Demand Metals

Posted by in categories: energy, sustainability, transportation

Dr. Wencai Zhang: “Our goal is to contribute to the supply chain of these critical materials while also making a positive environmental impact. We specifically aim to reduce the environmental consequences that can be associated with produced water.”


How can lithium, one of the most demanded minerals for clean energy products like electric vehicles, be harvested without harming the environment? This is | Technology.

Sep 6, 2024

Researchers develop light-charged supercapacitor for self-powered devices

Posted by in categories: chemistry, energy, nanotechnology, physics

Researchers at the Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc) and collaborators have designed a new supercapacitor that can be charged by light shining on it. Such supercapacitors can be used in various devices, including streetlights and self-powered electronic devices such as sensors.

Capacitors are electrostatic devices that store energy as charges on two metal plates called electrodes. Supercapacitors are upgraded versions of capacitors—they exploit electrochemical phenomena to store more energy, explains Abha Misra, Professor at IAP and corresponding author of the study published in the Journal of Materials Chemistry A.

The electrodes of the new were made of (ZnO) nanorods grown directly on fluorine-doped tin oxide (FTO), which is transparent. It was synthesized by Pankaj Singh Chauhan, first author and CV Raman postdoctoral fellow in Misra’s group at IISc.

Sep 4, 2024

Real-time control over a chemical reaction network by light

Posted by in categories: chemistry, energy

Self-assembled molecules are responsible for important cellular processes. Self-assembled structures such as microtubules or actin filaments are key to cell motility: change of shape, division or extension of membranes. These self-assembled entities have the peculiarity of being formed temporarily, since they require energy consumption. Inspired by nature, there is currently an active area of research that attempts to replicate this process of self-assembly artificially, using the so-called chemical reaction networks.

The control of self-assembly by means of chemical reaction networks is based on the activation of a monomer prone to self-assembly, which is then deactivated. In this way, the self-assembled structure requires a continuous energy consumption to perpetuate itself. From a chemical point of view, this energy is provided by a “fuel”, a chemical reagent. Depending on the availability of that energy source, the self-assembly process occurs or not.

Traditionally, highly reactive fuels have been used to carry out the activation, with little control over the deactivation process. This also implies that the activation and deactivation fuels tend to react with each other, making artificial dissipative self-assembly processes ineffective. In nature, these two processes are controlled by catalysts, which increases their efficiency. Thus, the introduction of catalysts in these processes and the control of their activity by external stimuli such as light are highly desirable, since they can limit part of these problems.

Sep 4, 2024

The Solar Wind Puzzle: Magnetic Switchbacks and Their Impact on Solar Activity

Posted by in categories: energy, space

What processes provide energy to the solar wind as it travels away from the Sun and throughout the solar system? This is what a recent study published in Science hopes to address as an international team of researchers investigated the processes responsible for providing energy to the solar wind as it leaves the Sun and traverses the rest of the solar system. This study holds the potential to help astronomers better understand the Sun’s processes, which could also provide insight into the processes of other stars, as well.

“Our study addresses a huge open question about how the solar wind is energized and helps us understand how the Sun affects its environment and, ultimately, the Earth,” said Dr. Yeimy Rivera, who is a postdoctoral fellow at the Center for Astrophysics | Harvard & Smithsonian and lead author of the study. “If this process happens in our local star, it’s highly likely that this powers winds from other stars across the Milky Way galaxy and beyond and could have implications for the habitability of exoplanets.”

For the study, the researchers used solar wind data from NASA’s Parker Solar Probe and the joint NASA-ESA Solar Orbiter collected within two days of each other due to the spacecraft being aligned with each other, enabling this research to be conducted. For context, the Parker Solar Probe is currently orbiting inside the Sun’s corona while Solar Orbiter is orbiting approximately halfway between the Earth and the Sun. In the end, the researchers found the solar wind’s acceleration that occurs between the Sun and the Earth is due to what are called “Alfvén waves”, which transport energy through the solar plasma. However, researchers haven’t been able to measure Alfvén waves until now.

Sep 4, 2024

New frying-pan-like wave energy converter aims for certification

Posted by in categories: energy, sustainability

Wave energy convertors can work round the clock as reliable source of renewable energy, if a cost-effective method can be arrived at.

Sep 3, 2024

Australia’s most powerful battery ready for commissioning after achieving grid’s biggest connection

Posted by in category: energy

The most powerful battery in Australia, and biggest single power unit ever to be connected to the country’s main grid, has completed the first stage of its connection and commissioning process, according to its owner Akaysha Energy.

The Waratah Super Battery will be sized at 850 megawatts (MW) and 1,680 megawatt hours (MWh), and its principal role will be to act as a kind of giant shock absorber, allowing the power lines transporting renewable power from the regions to the major load centres on the coast to operate at or near full capacity.

The battery is being built at the site of the already shuttered Munmorah coal fired generator, and will play a key role as the state’s remaining coal fired power plants are retired, even though the closure of the biggest of them all, the 2.88 GW Eraring generator, has been pushed back by at least two years to late 2027.

Sep 1, 2024

Scientists Extract Energy from “Nothing” Using Quantum Mechanics

Posted by in categories: energy, quantum physics

Physicists Successfully Demonstrate Quantum Energy Teleportation in Lab Experiments

TL;DR

Bob finds himself in need of energy — he wants to charge that fanciful quantum battery — but all he has access to is empty space. Fortunately, his friend Alice has a fully equipped physics lab in a far-off location. Alice measures the field in her lab, injecting energy into it there and learning about its fluctuations. This experiment bumps the overall field out of the ground state, but as far as Bob can tell, his vacuum remains in the minimum-energy state, randomly fluctuating. But then Alice texts Bob her findings about the vacuum around her location, essentially telling Bob when to plug in his battery. After Bob reads her message, he can use the newfound knowledge to prepare an experiment that extracts energy from the vacuum — up to the amount injected by Alice.

Aug 31, 2024

Scalable graphene technology could significantly enhance battery safety and performance

Posted by in categories: energy, materials

Researchers at Swansea University, in collaboration with Wuhan University of Technology, Shenzhen University, have developed a pioneering technique for producing large-scale graphene current collectors.

This breakthrough promises to significantly enhance the safety and performance of lithium-ion batteries (LIBs), addressing a critical challenge in energy storage technology.

Published in Nature Chemical Engineering, the study details the first successful protocol for fabricating defect-free foils on a commercial scale. These foils offer extraordinary thermal conductivity—up to 1,400.8 W m–1 K–1 —nearly ten times higher than traditional copper and aluminum current collectors used in LIBs.

Page 6 of 358First345678910Last