Menu

Blog

Archive for the ‘defense’ category: Page 10

Dec 18, 2012

The Fabulous Spaceport Colorado (Part 3)

Posted by in categories: business, defense, economics, education, engineering, geopolitics, policy, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 3.

In my last post I had mentioned that there were 2 business models for spaceports. I’ll name the first Sweden-America model after spaceports Sweden & America. The second, I’ll name Colorado-Singapore model after (yet to be) spaceports Colorado & Singapore.

The Sweden-America model basic premise is that spaceport ought to be built in remote locations, and then a hinterland economy is eventually built around the spaceport. This approach was originally driven by safety concerns and the need for a rocket range or vacant land for launching rockets to crash back to.

The basic premise of the Colorado-Singapore model is that launch vehicles are safe and that spaceports ought to be built close to centers of commerce and intermodal transportation networks. That is, spaceports are to be built in an existing hinterland economy.

Continue reading “The Fabulous Spaceport Colorado (Part 3)” »

Dec 16, 2012

The Fabulous Spaceport Colorado (Part 2)

Posted by in categories: business, defense, economics, engineering, policy, scientific freedom, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 2.

What is a spaceport?

Wikipedia gives a very broad definition of a spaceport, that anything and everything that is used to launch vehicles into orbit, space and interplanetary missions are now termed spaceports. ICBM sites are termed launch sites. There is, however, a distinction between a military site and a commercial site. In the aviation world a military site is termed an ‘airbase’ while a commercial civilian site is termed an ‘airport’. Similarly in the marine world the respective terms are ‘naval base’ and ‘seaport’. In that vein there are ‘spacebases’ and ‘spaceports’. So bear in mind that not everything that is labeled a ‘spaceport’ is one.

As far as I can remember the term ‘spaceport’ caught the public’s imagination only recently with the advent of Spaceport America at Las Cruces, NM. So let’s clarify. A spaceport is port for launching vehicles into suborbital, orbital and interplanetary space whose primary mission is to support and manage commercial activities, not military, not government sponsored launches. And therefore, in the United States there are only 10 existing or proposed spaceports. They are (1)Mid-Atlantic Regional Spaceport, Wallops Island, VA (2)Cecil Field Spaceport, Jacksonville, FL (3)Spaceport Florida, Cape Canaveral (4)Spaceport Oklahoma, Burns Flat, OK (5)Spaceport America, Las Cruces, NM (6)Mojave Air and Spaceport, Mojave, CA (7) California Spaceport, Vandenberg Air Force Base, Lompac, CA (8)Kodiak Launch Complex, Kodiak Island, AK, (9) Spaceport Colorado, Watkins, CO and (10)Spaceport Hawaii, HI.

Continue reading “The Fabulous Spaceport Colorado (Part 2)” »

Dec 15, 2012

The Fabulous Spaceport Colorado (Part 1)

Posted by in categories: business, defense, engineering, finance, geopolitics, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space.

On April 19, 2012, Gov. John Hickenlooper signed a bill that limited a spaceflight entity’s liability for spaceflight participants and paved the way for Spaceport Colorado’s development. The Front Range Airport Authority situated on 3,900 acres will allocate 900 acres towards the development and construction of Spaceport Colorado and ancillary facilities. The next steps are the completion of an environmental assessment, and feasibility and marketing study. This is expected to be completed by end of 2013.

In the 1995–96 I was Head of Corporate Planning at Westport, a $1 billion seaport infrastructure project in Malaysia, where I created and deployed the 7-hour port strategy, streamlined financial controls, container handling and container tariffs, reducing incoming (wharf to gate) dwell time to zero hours compared to the then world’s largest container port, Port Authority of Singapore’s (PSA) 18-hours. Westport was able to grow substantially, to the point where, in 2011, Westport handled 6.4 million TEUs compared to PSA’s 29.9 million TEUs. (TEU = Twenty-foot Equivalent Units or half a container)

So it caught my attention when Dennis Heap said Spaceport Colorado will be 33 miles (53 km) east of the city of Denver and about 6 miles (10 km) south of Denver International Airport (DIA).

Continue reading “The Fabulous Spaceport Colorado (Part 1)” »

Dec 14, 2012

The Kline Directive: Technological Feasibility (3b)

Posted by in categories: cosmology, defense, economics, education, engineering, general relativity, particle physics, physics, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In a previous post on Technological Feasibility I had stated that a quick and dirty model shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

That is, at the current rate of technological innovation we could as a civilization reach light speed in about 140 years. More importantly we could not even reach anywhere near that within the next 100 years. Our capability would be 6.3% of c.

The Lorentz-Fitzgerald transformation informs us light speed would require an infinite amount of energy (i.e. more than there is in the Universe!), thereby highlighting the weaknesses in these types of technological forecasting methods. But these models still serve a purpose. They provide some guidance as to what is possible and when. The operative word is guidance.

Continue reading “The Kline Directive: Technological Feasibility (3b)” »

Dec 2, 2012

The Kline Directive: Technological Feasibility (3a)

Posted by in categories: cosmology, defense, education, engineering, general relativity, particle physics, physics, policy, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

My apologies to my readers for this long break since my last post of Nov 19, 2012. I write the quarterly economic report for a Colorado bank’s Board of Directors. Based on my quarterly reports to the Board, I gave a talk Are We Good Stewards? on the US Economy to about 35 business executives at a TiE Rockies’ Business for Breakfast event. This talk was originally scheduled for Dec 14, but had moved forward to Nov 30 because the original speaker could not make the time commitment for that day. There was a lot to prepare, and I am very glad to say that it was very well received. For my readers who are interested here is the link to a pdf copy of my slides to Are We Good Stewards?

Now back to interstellar physics and the Kline Directive. Let’s recap.

In my last four posts (2c), (2d), (2e) & (2f) I had identified four major errors taught in contemporary physics. First, to be consistent (2c) with Lorentz-Fitzgerald and Special Theory of Relativity, elementary particles contract as their energy increases. This is antithetical to string theories and explains why string theories are becoming more and more complex without discovering new empirically verifiable fundamental laws of Nature.

Continue reading “The Kline Directive: Technological Feasibility (3a)” »

Nov 18, 2012

The Kline Directive: Technological Feasibility (2e)

Posted by in categories: cosmology, defense, engineering, general relativity, particle physics, philosophy, physics, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In this post I explain two more mistakes in physics. The first is 55 years old, and should have been caught long ago.

Bondi, in his 1957 paper “Negative mass in General Relativity”, had suggested that mass could be negative and there are surprising results from this possibility. I quote,

“… the positive body will attract the negative one (since all bodies are attracted by it), while the negative body will repel the positive body (since all bodies are repelled by it). If the motion is confined to the line of centers, then one would expect the pair to move off with uniform acceleration …”

Continue reading “The Kline Directive: Technological Feasibility (2e)” »

Nov 18, 2012

The Kline Directive: Technological Feasibility (2d)

Posted by in categories: cosmology, defense, education, engineering, general relativity, particle physics, philosophy, physics, policy, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In this post on technological feasibility, I point to some more mistakes in physics, so that we are aware of the type of mistakes we are making. This I hope will facilitate the changes required of our understanding of the physics of the Universe and thereby speed up the discovery of new physics required for interstellar travel.

The scientific community recognizes two alternative models for force. Note I use the term recognizes because that is how science progresses. This is necessarily different from the concept how Nature operates or Nature’s method of operation. Nature has a method of operating that is consistent with all Nature’s phenomena, known and unknown.

If we are willing to admit, that we don’t know all of Nature’s phenomena — our knowledge is incomplete — then it is only logical that our recognition of Nature’s method of operation is always incomplete. Therefore, scientists propose theories on Nature’s methods, and as science progresses we revise our theories. This leads to the inference that our theories can never be the exact presentation of Nature’s methods, because our knowledge is incomplete. However, we can come close but we can never be sure ‘we got it’.

Continue reading “The Kline Directive: Technological Feasibility (2d)” »

Nov 13, 2012

Smithsonian National Air and Space Museum: No Lifeboats Please

Posted by in categories: defense, education, engineering, existential risks, finance, military, space

It was on a long-haul flight many months ago that I recalled a visit to the National Air and Space Museum [1] to a fellow passenger whom I struck up conversation with. Asking if I could recommend somewhere to visit in Washington DC, I recounted how I had spent an entire day amazing at the collection of historic aircraft and spacecraft on my only visit to that city fifteen years or so previous as a young adult — and as always a kid at heart.

Seeing the sheer scale of the F-1 engine for the Saturn 5 rocket first hand, stepping inside an Apollo command module identical to those used during the Apollo program, not to mention seeing full life-size replicas of the Lunar Roving Vehicle, an Apollo Lunar Module and for some reason what seemed most surreal to me… the Viking 1 Lander. This was enchantment.

However, for all the amazement that such a museum can provide, it is also a saddening reminder that what once was the forefront of human ambition and endeavor has now been largely resigned to history. NASA budgets are cut annually [2] whilst military expenditure takes ever more precedence. A planned six percent budget decrease in 2013 is the equivalent savings to three hours of the Iraq and Afghanistan Wars. Instead of reaching to explore outer-space we are encouraged to get excited about the equivalent billions [3] invested on science exploring the subatomic inner-space world. Meanwhile, we tend to forget that the ambitions of space exploration are not just to satisfy some wide-eyed childhood yearning to explore, but the serious and sobering prospect of needing to ensure that we as a species can eventually colonize to other worlds and ensure we are not counting down the days to our extinction on an ever-more-precarious planetary solitude.

In the face of such indifference, such concepts of lifeboats have become marginalized to what is perceived to be a realm solely for loons and dreamers, or ‘space cadets’ as we used to call them back in the days of school. The trillion dollar question really is what it takes to redirect all that military investment into science & exploration instead. It is down to credibility. Governments shy away from investing public funds when there is a lack of credibility.

Continue reading “Smithsonian National Air and Space Museum: No Lifeboats Please” »

Nov 12, 2012

Our Youth, Thinking Outside the Box

Posted by in categories: business, defense, economics, education, engineering, human trajectories, military, philosophy, space, sustainability

Recently I attended the AIAA Rocky Mountain Region’s First Annual Technical Symposium, October 26, 2012. Link to Symposium Photos, here. Link to Symposium Presentations, here.

I must congratulate many of the presenters, our youth, our next generation leaders, for thinking outside the box. And I congratulate their supervisors, advisors and team members for facilitating a supportive environment that nurtures outside the box thinking.

Here is why. Several remarkable papers were presented. For example, Tom Joslyn (Lt. Col, PhD) presented “Use of Liquid Droplet Stream Momentum Transfer for Lunar and Interplanetary Missions”. By using liquid droplets to conserve and transfer momentum between the momentum storage spacecraft and the lunar landing spacecraft, one could reduce the LEO mass from 200,000 kg to 24,500 kg. The presentation wasn’t about theory. It was about the how such a concept would be Engineering Feasible. The type of liquids required, and the ejection and capture systems required. That is impressive.

Second, “Cockpit of the Future” by the Capstone Team. They presented many new concepts like Palm Piloteer, haptic feedback suits, wrap around displays and seat designs.

Continue reading “Our Youth, Thinking Outside the Box” »

Nov 10, 2012

The Kline Directive: Technological Feasibility (2c)

Posted by in categories: defense, education, engineering, general relativity, nanotechnology, particle physics, philosophy, physics, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In this post I discuss the second of three concepts, that if implemented should speed up the rate of innovation and discovery so that we can achieve interstellar travel within a time frame of decades, not centuries. Okay, I must remind you that this will probably upset some physicists.

One of the findings of my 12-year study was that gravitational acceleration was independent of the internal structure of a particle, therefore, the elegantly simple formula, g=τc2, for gravitational acceleration. This raised the question, what is the internal structure of a particle? For ‘normal’ matter, the Standard Model suggests that protons and neutrons consist of quarks, or other mass based particles. Electrons and photons are thought to be elementary.

I had a thought, a test for mass as the gravitational source. If ionized matter showed the same gravitational acceleration effects as non-ionized matter, then one could conclude that mass is the source of gravitational acceleration, not quark interaction; because the different ionizations would have different electron mass but the same quark interaction. This would be a difficult test to do correctly because the electric field effects are much greater than gravitational effects.

Continue reading “The Kline Directive: Technological Feasibility (2c)” »

Page 10 of 20First7891011121314Last