Menu

Blog

Archive for the ‘cosmology’ category: Page 296

Oct 21, 2019

What was the first color in the universe?

Posted by in category: cosmology

The universe bathes in a sea of light, from the blue-white flickering of young stars to the deep red glow of hydrogen clouds. Beyond the colors seen by human eyes, there are flashes of X-rays and gamma rays, powerful bursts of radio, and the faint, ever-present glow of the cosmic microwave background. The cosmos is filled with colors seen and unseen, ancient and new. But of all these, there was one color that appeared before all the others, the first color of the universe.

The universe began 13.8 billion years ago with the Big Bang. In its earliest moment, it was more dense and hot than it would ever be again. The Big Bang is often visualized as a brilliant flash of light appearing out of a sea of darkness, but that isn’t an accurate picture. The Big Bang didn’t explode into empty space. The Big Bang was an expanding space filled with energy.

At first, temperatures were so high that light didn’t exist. The cosmos had to cool for a fraction of a second before photons could appear. After about 10 seconds, the universe entered the photon epoch. Protons and neutrons had cooled into the nuclei of hydrogen and helium, and space was filled with a plasma of nuclei, electrons and photons. At that time, the temperature of the universe was about 1 billion degrees Kelvin.

Oct 21, 2019

New supercomputer simulations explore magnetic reconnection and make a surprising discovery

Posted by in categories: cosmology, mobile phones, supercomputing

Magnetic reconnection, a process in which magnetic field lines tear and come back together, releasing large amounts of kinetic energy, occurs throughout the universe. The process gives rise to auroras, solar flares and geomagnetic storms that can disrupt cell phone service and electric grids on Earth. A major challenge in the study of magnetic reconnection, however, is bridging the gap between these large-scale astrophysical scenarios and small-scale experiments that can be done in a lab.

Researchers have now overcome this barrier through a combination of clever experiments and cutting-edge simulations. In doing so, they have uncovered a previously unknown role for a universal process called the “Biermann battery effect,” which turns out to impact magnetic in unexpected ways.

The Biermann battery effect, a possible seed for the magnetic fields pervading our universe, generates an electric current that produces these fields. The surprise findings, made through , show the effect can play a significant role in the reconnection occurring when the Earth’s magnetosphere interacts with astrophysical plasmas. The effect first generates lines, but then reverses roles and cuts them like scissors slicing a rubber band. The sliced fields then reconnect away from the original reconnection point.

Oct 19, 2019

Surprise Black Hole Discovery Could Explain How They Grew So Enormous in The Early Universe

Posted by in categories: cosmology, materials

In recent years, cosmologists peering back to the very dawn of our Universe have discovered something peculiar. A whole bunch of supermassive black holes — in a time thought way too early for such massive objects to have formed.

Exactly how they got to be so freaking huge so quickly is a heck of a puzzle — but a new surprise discovery might have delivered an answer. The disc of dust and gas around a supermassive black hole is moving in such a way that it’s slurping down material faster than it would normally.

That means it’s gaining mass faster than expected — which in turn could explain what happened in the earliest days of our Universe.

Oct 18, 2019

Scientists may have discovered parallel universe

Posted by in categories: astronomy, cosmology, physics, science, space

Scientists believe they may have caught a glimpse of a parallel universe bumping up against ours.

They’ve seen hints in signals from the most distant points of the universe that suggest the fabric of our universe has been disrupted by another incredibly different universe. Their analysis may be the proof for the multiverse theory.

According to researchers: “Dr Ranga-Ram Chary examined the noise and residual signals in the cosmic microwave background left over from the Big Bang (pictured) and found a number of scattered bright spots which he believes may be signals of another universe bumping into our own billions of years ago.”

At least that’s the tentative conclusion researchers have come to. According to some cosmological theories, collisions of alternative universes should be possible. Theories conclude that our universe is like a bubble among many.

Continue reading “Scientists may have discovered parallel universe” »

Oct 16, 2019

Ancient Galaxy in the ‘Sea Serpent’ Has More Dark Matter Than Expected

Posted by in category: cosmology

Scientists used X-ray observations to study a peculiar galaxy almost as old as the universe itself.

Oct 16, 2019

Stephen Hawking’s ‘black hole time machine’ proposal to NASA revealed

Posted by in category: cosmology

STEPHEN HAWKING declared “a supermassive black is a time machine” and explained how a space agency like NASA could use the phenomenon to fast-forward the clocks.

Oct 15, 2019

Physicists have found quasiparticles that mimic hypothetical dark matter axions

Posted by in categories: cosmology, particle physics

These subatomic particles could make up dark matter in the cosmos. A mathematically similar phenomenon occurs in a solid material.

Oct 15, 2019

How falling into a black hole would leave you ‘frozen in place for eternity’

Posted by in category: cosmology

IF you were to ever fall into a black hole, you would be imprinted on the outer edge for eternity, a scientist has said.

Oct 15, 2019

How the Neutrino’s Tiny Mass Could Help Solve Big Mysteries

Posted by in categories: cosmology, particle physics

The KATRIN experiment is closing in on the mass of the neutrino, which could point to new laws of particle physics and shape theories of cosmology.

Oct 15, 2019

Stretched photons recover lost interference

Posted by in categories: computing, cosmology, particle physics, quantum physics

The smallest pieces of nature—individual particles like electrons, for instance—are pretty much interchangeable. An electron is an electron is an electron, regardless of whether it’s stuck in a lab on Earth, bound to an atom in some chalky moon dust or shot out of an extragalactic black hole in a superheated jet. In practice, though, differences in energy, motion or location can make it easy to tell two electrons apart.

One way to test for the similarity of particles like electrons is to bring them together at the same time and place and look for interference—a that arises when particles (which can also behave like waves) meet. This interference is important for everything from fundamental tests of quantum physics to the speedy calculations of quantum computers, but creating it requires exquisite control over particles that are indistinguishable.

With an eye toward easing these requirements, researchers at the Joint Quantum Institute (JQI) and the Joint Center for Quantum Information and Computer Science (QuICS) have stretched out multiple photons—the quantum particles of light—and turned three distinct pulses into overlapping quantum waves. The work, which was published recently in the journal Physical Review Letters, restores the interference between photons and may eventually enable a demonstration of a particular kind of quantum supremacy—a clear speed advantage for computers that run on the rules of quantum physics.