Aug 2, 2022
Physicists Discover Oldest Dark Matter Yet With Lensed Microwaves
Posted by Shubham Ghosh Roy in categories: cosmology, physics
Lensing of the cosmic microwave background indicates 12-billion-year-old galaxies had dark matter.
Lensing of the cosmic microwave background indicates 12-billion-year-old galaxies had dark matter.
Australian scientists are making strides towards solving one of the greatest mysteries of the universe: the nature of invisible “dark matter”.
Peer long enough into the heavens, and the Universe starts to resemble a city at night. Galaxies take on characteristics of streetlamps cluttering up neighborhoods of dark matter, linked by highways of gas that run along the shores of intergalactic nothingness.
This map of the Universe was preordained, laid out in the tiniest of shivers of quantum physics moments after the Big Bang launched into an expansion of space and time some 13.8 billion years ago.
Yet exactly what those fluctuations were, and how they set in motion the physics that would see atoms pool into the massive cosmic structures we see today is still far from clear.
These black holes are not absorbing matter from a nearby star, making them incredibly hard to find.
From “i” for “inspiral” to “g” for “gamma-ray burst”.
I promise you: this post is going to tell a scientifically coherent story that involves all five topics listed in the title. Not one can be omitted.
My story starts with a Zoom talk that the one and only Lenny Susskind delivered for the Simons Institute for Theory of Computing back in May. There followed a panel discussion involving Lenny, Edward Witten, Geoffrey Penington, Umesh Vazirani, and your humble shtetlmaster.
Ever since the start of the hot Big Bang, time ticks forward as the Universe expands. But could time ever run backwards, instead?
What would happen if you fell into a black hole? Join James Beacham, particle physicist at the Large Hadron Collider at CERN, as he explores what happens when the fabric of reality – physical or societal – gets twisted beyond recognition.
Watch the Q&A with James here: https://youtu.be/Q37oEB4bNSI
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.
Continue reading “The other end of a black hole — with James Beacham” »
Why is there something rather than nothing? And what does ‘nothing’ really mean? More than a philosophical musing, understanding nothing may be the key to unlocking deep mysteries of the universe, from dark energy to why particles have mass. Journalist John Hockenberry hosts Nobel laureate Frank Wilczek, esteemed cosmologist John Barrow, and leading physicists Paul Davies and George Ellis as they explore physics, philosophy and the nothing they share.
This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.
What is dark matter? Does it even exist, or do we just need an adjustment to our theory of gravity?
What is dark matter? It has never been observed, yet scientists estimate that it makes up 85% of the matter in the universe. The short answer is that no one knows what dark matter is. More than a century ago, Lord Kelvin offered it as an explanation for the velocity of stars in our own galaxy. Decades later, Swedish astronomer Knut Lundmark noted that the universe must contain much more matter than we can observe. Scientists since the 1960s and ’70s have been trying to figure out what this mysterious substance is, using ever-more complicated technology. However, a growing number of physicists suspect that the answer may be that there is no such thing as dark matter at all.
Scientists can observe far-away matter in a number of ways. Equipment such as the famous Hubble telescope measures visible light while other technology, such as radio telescopes, measures non-visible phenomena. Scientists often spend years gathering data and then proceed to analyze it to make the most sense of what they are seeing.