Menu

Blog

Archive for the ‘cosmology’ category: Page 137

Jan 26, 2023

Neil Turok on the case for a parallel universe going backwards in time

Posted by in category: cosmology

To explain the cosmos without invoking cosmic inflation, physicist Neil Turok has proposed the existence of a mirror-image universe going backwards in time from the big bang. He tells us why the idea is so compelling.

Jan 26, 2023

Green comet’s new “anti-tail” seemingly breaks the laws of physics

Posted by in categories: cosmology, physics

Astrophotographers spotted what looks like a third tail flowing in front of, instead of behind, the glowing comet.

The green comet C/2022 E3 (ZTF), which last flew by Earth 50,000 years ago when Neanderthals still coexisted with humans, has been gradually making its way across the night sky over the last few days.

What’s more, as per a LiveScience report, this “anti-tail” appears to be flowing in the wrong direction and is, therefore, seemingly breaking the laws of physics.

Continue reading “Green comet’s new ‘anti-tail’ seemingly breaks the laws of physics” »

Jan 26, 2023

Three mind-blowing space mysteries that could be solved in next decade — including what lies beneath the Earth’s crust

Posted by in category: cosmology

AS technology advances rapidly, we’re getting closer to cracking space mysteries that once baffled scientists.

Some experts think we could solve mysteries like dark matter in the next decade.

We’ve rounded up some of the biggest space mysteries that scientists are hoping to solve in our life times.

Jan 26, 2023

A new approach to solving the mystery of dark energy

Posted by in categories: cosmology, particle physics, quantum physics

What is behind dark energy—and what connects it to the cosmological constant introduced by Albert Einstein? Two physicists from the University of Luxembourg point the way to answering these open questions of physics.

The universe has a number of bizarre properties that are difficult to understand with everyday experience. For example, the matter we know, consisting of atoms and molecules and other particles, apparently makes up only a small part of the energy density of the universe. The largest contribution, more than two-thirds, comes from “”—a hypothetical form of energy whose background physicists are still puzzling over.

Moreover, the universe is not only expanding steadily, but also doing so at an ever-faster pace. Both characteristics seem to be connected, because dark energy is also considered a driver of accelerated expansion. Moreover, it could reunite two powerful physical schools of thought: and the developed by Albert Einstein. But there is a catch: calculations and observations have so far been far from matching. Now two researchers from Luxembourg have shown a way to solve this 100-year-old riddle in a paper published by Physical Review Letters.

Jan 25, 2023

Study demonstrates a new method to search for meV dark photons

Posted by in categories: cosmology, particle physics

Approximately 85% of the mass of our galaxy is comprised by dark matter, matter that does not emit, absorb or reflect light and thus cannot be directly observed. While several studies have hinted at or theorized about its composition, it remains one of the greatest unresolved physics problems.

Physicists all over the world have been conducting dark matter searches or trying to come up with new methods to directly observe different dark matter candidates. One hypothetical form of dark matter that has so far eluded detection is dark-photon dark matter.

An intriguing possibility is that dark matter is comprised of dark photons, which resemble photons (i.e., the particles that make up visible light), but interact with charges with feeble strength. These dark photons could theoretically have masses in the milli-electrovolt range, approximately a million times lighter than those of electrons and thus notoriously difficult to detect.

Jan 25, 2023

The Truth About Death

Posted by in categories: biological, biotech/medical, cosmology, neuroscience, particle physics, quantum physics

With so much death all around us, from the pandemic to the war in Ukraine to all the mass shootings, you might wonder what it all means. Queen Elizabeth gone. Betty White gone. And perhaps even a loved one of yours gone. They no longer exist, right? They are just memories, at least from a rational scientific perspective. But what if you’re wrong?

Dr. Caroline Soames-Watkins also believed that the world around her existed as a hard, cold reality ticking away like a clock. Death was a foregone conclusion—until she learned different. Caro, the protagonist of my new novel co-written with award-winning sci-fi author Nancy Kress, also thought she had the world figured out. Not her personal world, which has been upended by controversy, but how the physical world works and how her consciousness operates within it. Broke and without a job, she accepts a job offer from her great-uncle, a Nobel Prize-winning scientist who runs a research facility studying the space between biology and consciousness—between the self and what we assume is reality. They are on the verge of a humanity-altering discovery, which throws Caro into danger—love, loss, and death—that she could never have imagined possible.

Observer takes Caro on a mind-expanding journey to the very edge of science, challenging her to think about life and the power of the imagination in startling new ways. The ideas behind Observer are based on real science, starting with the famous two-slit experiments, in which the presence of an observer affects the path taken by a sub-atomic particle, and moves step-by-step into cutting-edge science about quantum entanglement, on-going experiments applying quantum-level physics to the macro-world, the multiverse, and the nature of time and consciousness itself.

Jan 24, 2023

The Record for the Farthest Galaxy just got Broken Again, now just 250 million years after the Big Bang

Posted by in categories: cosmology, evolution

In a recent study that was sent to MNRAS, a group of researchers worked together to use the first batch of data from the James Webb Space Telescope (JWST) to find a candidate galaxy, CEERS-93316, that formed about 250 million years after the Big Bang and set a new record for redshift with a value of z = 16.7. This discovery is very exciting because it shows how good JWST is, even though it has only just started sending back its first set of data. The Cosmic Evolution Early Release Science Survey, or CEERS, was made so that it could be used with JWST to take pictures.

“The past few weeks have been surreal, watching all the records that stood for a long time with Hubble be broken by JWST,” says Dr. Rebecca Bowler, who is an Ernest Rutherford Fellow at the University of Manchester, and a co-author on the study. “Finding a z = 16.7 galaxy candidate is an amazing feeling – it wasn’t something we were expecting from the early data.”

This new study talks about a dozen previous studies that measured objects up to redshifts z 10 using a mix of ground-based observations and the Hubble Space Telescope and Spitzer Space Telescope.

Jan 23, 2023

DECam Captures New Galactic Panorama that Shows Over 3 Billion of Celestial Objects

Posted by in category: cosmology

Dark Energy Camera Plane Survey took two years to conclude.

Jan 23, 2023

Supermassive black holes may be bigger and more powerful than we previously knew

Posted by in category: cosmology

A new study sheds light on the darkness of black holes at the center of galaxies.

Jan 23, 2023

A new model for dark matter

Posted by in categories: cosmology, particle physics

Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without dark matter, for example, the motion of galaxies cannot be explained. But it has never been possible to detect dark matter in an experiment.

Currently, there are many proposals for new experiments: They aim to detect dark directly via its scattering from the constituents of the atomic nuclei of a detection medium, i.e., protons and neutrons.

A team of researchers—Robert McGehee and Aaron Pierce of the University of Michigan and Gilly Elor of Johannes Gutenberg University of Mainz in Germany—has now proposed a new candidate for dark matter: HYPER, or “HighlY Interactive ParticlE Relics.”