Menu

Blog

Archive for the ‘computing’ category: Page 60

Jun 30, 2024

What happened in Big Bang — new theory, new state of matter

Posted by in categories: computing, cosmology, physics

Physicists have proposed a new theory: in the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge.

For every kilogram of matter that we can see — from the computer on your desk to distant stars and galaxies — there are 5kgs of invisible matter that suffuse our surroundings. This “dark matter” is a mysterious entity that evades all forms of direct observation yet makes its presence felt through its invisible pull on visible objects.

Continue reading “What happened in Big Bang — new theory, new state of matter” »

Jun 30, 2024

Researchers develop Superman-Inspired Imager Chip for Mobile Devices

Posted by in categories: biotech/medical, computing, mobile phones

Researchers from The University of Texas at Dallas and Seoul National University have developed an imager chip inspired by Superman’s X-ray vision that could be used in mobile devices to make it possible to detect objects inside packages or behind walls.

Chip-enabled cellphones might be used to find studs, wooden beams or wiring behind walls, cracks in pipes, or outlines of contents in envelopes and packages. The technology also could have medical applications.

The researchers first demonstrated the imaging technology in a 2022 study. Their latest paper, published in the March print edition of IEEE Transactions on Terahertz Science and Technology, shows how researchers solved one of their biggest challenges: making the technology small enough for handheld mobile devices while improving image quality.

Jun 29, 2024

Quantum Annealers Unravel the Mysteries of Many-Body Systems

Posted by in categories: computing, particle physics, quantum physics

Scientists have utilized a quantum annealer to simulate quantum materials effectively, marking a crucial development in applying quantum computing in material science and enhancing quantum memory device performance.

Physicists have long been pursuing the idea of simulating quantum particles with a computer that is itself made up of quantum particles. This is exactly what scientists at Forschungszentrum Jülich have done together with colleagues from Slovenia. They used a quantum annealer to model a real-life quantum material and showed that the quantum annealer can directly mirror the microscopic interactions of electrons in the material. The result is a significant advancement in the field, showcasing the practical applicability of quantum computing in solving complex material science problems. Furthermore, the researchers discovered factors that can improve the durability and energy efficiency of quantum memory devices.

Richard Feynman’s Legacy in Quantum Computing.

Jun 29, 2024

New computational microscopy technique provides more direct route to crisp images

Posted by in categories: biotech/medical, computing, information science

For hundreds of years, the clarity and magnification of microscopes were ultimately limited by the physical properties of their optical lenses. Microscope makers pushed those boundaries by making increasingly complicated and expensive stacks of lens elements. Still, scientists had to decide between high resolution and a small field of view on the one hand or low resolution and a large field of view on the other.

In 2013, a team of Caltech engineers introduced a called FPM (for Fourier ptychographic microscopy). This technology marked the advent of computational microscopy, the use of techniques that wed the sensing of conventional microscopes with that process detected information in new ways to create deeper, sharper images covering larger areas. FPM has since been widely adopted for its ability to acquire high-resolution images of samples while maintaining a large field of view using relatively inexpensive equipment.

Now the same lab has developed a new method that can outperform FPM in its ability to obtain images free of blurriness or distortion, even while taking fewer measurements. The new technique, described in a paper that appeared in the journal Nature Communications, could lead to advances in such areas as biomedical imaging, digital pathology, and drug screening.

Jun 29, 2024

How scientists build rotatory machines with molecules

Posted by in categories: computing, nanotechnology

Machines have evolved to meet the demands of daily life and industrial use, with molecular-scale devices often exhibiting improved functionalities and mechanical movements. However, mastering the control of mechanics within solid-state molecular structures remains a significant challenge.

Researchers at Ulsan National Institute of Science and Technology (UNIST), South Korea have made a groundbreaking discovery that could pave the way for revolutionary advancements in data storage and beyond. Led by Professor Wonyoung Choe in the Department of Chemistry at UNIST), a team of scientists has developed zeolitic imidazolate frameworks (ZIFs) that mimic intricate machines. These molecular-scale devices can exhibit precise control over nanoscale mechanical movements, opening up exciting new possibilities in nanotechnology.

The findings have been published in Angewandte Chemie International Edition (“Zeolitic Imidazolate Frameworks as Solid-State Nanomachines”).

Jun 29, 2024

New method developed for measuring thermal expansion in atomically thin materials

Posted by in categories: computing, particle physics

Advanced materials, including two-dimensional or atomically thin materials just a few atoms thick, are essential for the future of microelectronics technology. Now a team at Los Alamos National Laboratory has developed a way to directly measure such materials’ thermal expansion coefficient, the rate at which the material expands as it heats. That insight can help address heat-related performance issues of materials incorporated into microelectronics, such as computer chips.

The research has been published in ACS Nano (“Direct measurement of the thermal expansion coefficient of epitaxial WSe 2 by four-dimensional scanning transmission electron microscopy”).

“It’s well understood that heating a material usually results in expansion of the atoms arranged in the material’s structure,” said Theresa Kucinski, scientist with the Nuclear Materials Science Group at Los Alamos. “But things get weird when the material is only one to a few atoms thick.”

Jun 28, 2024

Researchers discover ‘Trojan Horse’ Virus Hiding in Human Parasite

Posted by in categories: biotech/medical, computing, neuroscience

An international team led by researchers at the University of Toronto has found a new RNA virus that they believe is hitching a ride with a common human parasite.

The virus, called Apocryptovirus odysseus, along with 18 others that are closely related to it, was discovered through a computational screen of human neuron data — an effort aimed at elucidating the connection between RNA viruses and neuroinflammatory disease. The virus is associated with severe inflammation in humans infected with the parasite Toxoplasma gondii, leading the team to hypothesize that it exacerbates toxoplasmosis disease.

“We discovered A. odysseus in human neurons using the open-science Serratus platform to search through more than 150,000 RNA viruses” said Purav Gupta, first author on the study, recent high school graduate and current undergraduate student at U of T’s Donnelly Centre for Cellular and Biomolecular Research. “Serratus identifies RNA viruses from public data by flagging an enzyme called RNA-dependent RNA polymerase, which facilitates replication of viral RNA. This enzyme allows the virus to reproduce itself and for the infection to spread.”

Jun 27, 2024

Organ-on-chip market for drug testing expected to see tenfold growth to $1.3 billion by 2032

Posted by in categories: biotech/medical, computing, cyborgs, transhumanism

Is this the beginning of the age of bionic humans?

Jun 27, 2024

Papertronics devices achieve dual neuromorphic and security functions

Posted by in categories: computing, security

Researchers develop versatile paper-based electronic devices demonstrating both neuromorphic computing capabilities and physically unclonable functions for security applications.

Jun 27, 2024

Physicists Uncover New Path to Quantum Computing: Infrared Illumination

Posted by in categories: computing, particle physics, quantum physics

Physicists at TU Graz have determined that certain molecules can be stimulated by pulses of infrared light to generate small magnetic fields. If experimental trials are also successful, this technique could potentially be applied in quantum computer circuits.

When molecules absorb infrared light, they start to vibrate as they receive energy. Andreas Hauser from the Institute of Experimental Physics at Graz University of Technology (TU Graz) used this well-understood process as a basis for exploring whether these vibrations could be harnessed to produce magnetic fields. Since atomic nuclei carry a positive charge, the movement of these charged particles results in the creation of a magnetic field.

Using the example of metal phthalocyanines – ring-shaped, planar dye molecules – Andreas Hauser and his team have now calculated that, due to their high symmetry, these molecules actually generate tiny magnetic fields in the nanometre range when infrared pulses act on them.

Page 60 of 862First5758596061626364Last