Menu

Blog

Archive for the ‘computing’ category: Page 237

Apr 21, 2023

Study shows how tiny plastic particles manage to breach the blood-brain barrier

Posted by in categories: biotech/medical, computing, food, neuroscience

Among the biggest environmental problems of our time, micro-and nanoplastic particles (MNPs) can enter the body in various ways, including through food. And now for the first time, research conducted at MedUni Vienna has shown how these minute particles manage to breach the blood-brain barrier and as a consequence penetrate the brain. The newly discovered mechanism provides the basis for further research to protect humans and the environment.

Published in the journal Nanomaterials, the study was carried out in an with oral administration of MNPs, in this case polystyrene, a widely-used plastic which is also found in . Led by Lukas Kenner (Department of Pathology at MedUni Vienna and Department of Laboratory Animal Pathology at Vetmeduni) and Oldamur Hollóczki (Department of Physical Chemistry, University of Debrecen, Hungary) the research team was able to determine that tiny polystyrene particles could be detected in the brain just two hours after ingestion.

The mechanism that enabled them to breach the was previously unknown to medical science. “With the help of computer models, we discovered that a certain (biomolecular corona) was crucial in enabling plastic particles to pass into the brain,” Oldamur Hollóczki explained.

Apr 21, 2023

Giant orbital magnetic moment appears in a graphene quantum dot

Posted by in categories: computing, information science, particle physics, quantum physics

A giant orbital magnetic moment exists in graphene quantum dots, according to new work by physicists at the University of California Santa Cruz in the US. As well as being of fundamental interest for studying systems with relativistic electrons – that is those travelling at near-light speeds – the work could be important for quantum information science since these moments could encode information.

Graphene, a sheet of carbon just one atom thick, has a number of unique electronic properties, many of which arise from the fact that it is a semiconductor with a zero-energy gap between its valence and conduction bands. Near where the two bands meet, the relationship between the energy and momentum of charge carriers (electrons and holes) in the material is described by the Dirac equation and resembles that of a photon, which is massless.

These bands, called Dirac cones, enable the charge carriers to travel through graphene at extremely high, “ultra-relativistic” speeds approaching that of light. This extremely high mobility means that graphene-based electronic devices such as transistors could be faster than any that exist today.

Apr 20, 2023

Science and Math News

Posted by in categories: biological, computing, mathematics, physics, science

Welcome back to Instagram. Sign in to check out what your friends, family & interests have been capturing & sharing around the world.

Apr 19, 2023

Embracing variations: Physicists first to analyze noise in Lambda-type quantum memory

Posted by in categories: computing, particle physics, quantum physics, security

In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.

Virginia Lorenz, a professor of physics at the University of Illinois Urbana-Champaign, studies Lambda-type optical quantum , a promising technology that relies on light interacting with a large group of atoms. She is developing a device based on hot metallic vapor with graduate student Kai Shinbrough.

As the researchers work towards a practical device, they are also providing some of the first theoretical analyses of Lambda-type devices. Most recently, they reported the first variance-based sensitivity analysis describing the effects of experimental noise and imperfections in Physical Review A.

Apr 19, 2023

Algorithms Simulate Infinite Quantum System on Finite Quantum Computers

Posted by in categories: computing, information science, quantum physics

Year 2021 😗😁


Researchers say algorithms can simulate an infinite quantum system on finite quantum computers in interesting advance for quantum tech.

Apr 18, 2023

Dr. Charles Tahan, Ph.D. — Director, National Quantum Coordination Office — OSTP, The White House

Posted by in categories: computing, government, policy, quantum physics

Accelerating Leadership In Quantum Information Sciences — Dr. Charles Tahan, Ph.D., Assistant Director for Quantum Information Science (QIS); Director, National Quantum Coordination Office, Office of Science and Technology Policy, The White House.


Dr. Charles Tahan, Ph.D. is the Assistant Director for Quantum Information Science (QIS) and the Director of the National Quantum Coordination Office (NQCO) within the White House Office of Science and Technology Policy (https://www.quantum.gov/nqco/). The NQCO ensures coordination of the National Quantum Initiative (NQI) and QIS activities across the federal government, industry, and academia.

Continue reading “Dr. Charles Tahan, Ph.D. — Director, National Quantum Coordination Office — OSTP, The White House” »

Apr 18, 2023

The Data Center Exchange

Posted by in category: computing

Listen to the data center exchange on spotify.

Apr 18, 2023

Researchers Produce Entangled Photons Entirely On-Chip

Posted by in categories: computing, quantum physics

A new approach shrinks quantum photonic technology to the size of a Euro coin.

Apr 18, 2023

A luddite link to nano-terrorists

Posted by in categories: computing, nanotechnology, terrorism

An older article but something the world is facing just like in certain sci-fi movies.


The reference publication of the movement in the 80s, the Earth First journal, featured a column called Ask Ned Ludd, in reference to the mythical character that gave name to the luddites. Jones thinks that neo-luddites are in fact misreading the original luddites, but he believes that understanding the difference between the old and modern ones tells us a lot about the ideology of the latter.

“Luddites were not anti-technology: they were skilled craftsmen, involved in a labour movement aimed at keeping their machines and their jobs,” he says. “That’s very different from the neo-luddites ideas of relinquishing civilisation and [of] nature as the supreme good.” Jones thinks neo-luddism is fed rather by “the idea of technology as a disembodied, transcendent, terrifying force outside the human”, which emerged in the mid 20th century, with the bomb and the rise of large-scale computing.

Apr 17, 2023

Research provides new insight into quantum effects in lithium sulfur batteries

Posted by in categories: computing, mobile phones, quantum physics, sustainability

Lithium-ion batteries power our lives.

Because they are lightweight, have and are rechargeable, the batteries power many products, from laptops and cell phones to electric cars and toothbrushes.

However, current have reached the limit of how much energy they can store. That has researchers looking for more powerful and cheaper alternatives.