Menu

Blog

Archive for the ‘computing’ category: Page 10

Oct 26, 2024

Zero Resistance Breakthrough: Meet the Quantum Sandwich Powering the Future

Posted by in categories: computing, quantum physics

Researchers have developed a new “sandwich” structure material that exhibits the quantum anomalous Hall effect, enabling electrons to travel with almost no resistance at higher temperatures.

This breakthrough could significantly enhance computing power while dramatically reducing energy consumption. The structure is based on a layered approach with bismuth telluride and manganese bismuth telluride, promising faster and more efficient future electronic devices.

Quantum Material Innovations

Oct 26, 2024

New research shows most space rocks crashing into Earth come from a single source

Posted by in categories: asteroid/comet impacts, computing, existential risks

The two new studies place the sources of ordinary chondrite types into specific asteroid families – and most likely specific asteroids. This work requires painstaking back-tracking of meteoroid trajectories, observations of individual asteroids, and detailed modelling of the orbital evolution of parent bodies.

The study led by Miroslav Brož reports that ordinary chondrites originate from collisions between asteroids larger than 30 kilometres in diameter that occurred less than 30 million years ago.

The Koronis and Massalia asteroid families provide appropriate body sizes and are in a position that leads to material falling to Earth, based on detailed computer modelling. Of these families, asteroids Koronis and Karin are likely the dominant sources of H chondrites. Massalia (L) and Flora (LL) families are by far the main sources of L-and LL-like meteorites.

Oct 25, 2024

‘Electric Plastic’ Could Merge Technology With the Body in Future Wearables and Implants

Posted by in categories: biotech/medical, computing, health, neuroscience, wearables

Finding ways to connect the human body to technology could have broad applications in health and entertainment. A new “electric plastic” could make self-powered wearables, real-time neural interfaces, and medical implants that merge with our bodies a reality.

While there has been significant progress in the development of wearable and implantable technology in recent years, most electronic materials are hard, rigid, and feature toxic metals. A variety of approaches for creating “soft electronics” has emerged, but finding ones that are durable, power-efficient, and easy to manufacture is a significant challenge.

Continue reading “‘Electric Plastic’ Could Merge Technology With the Body in Future Wearables and Implants” »

Oct 25, 2024

Titan’s Atmosphere and Climate: Lessons from an Alien World

Posted by in categories: climatology, computing, satellites

Dr. Lauren Schurmeier: “The methane clathrate crust warms Titan’s interior and causes surprisingly rapid topographic relaxation, which results in crater shallowing at a rate that is close to that of fast-moving warm glaciers on Earth.”


How does Saturn’s largest moon, Titan, have such a methane-rich atmosphere? This is what a recent study published in The Planetary Science Journal hopes to address as a team of researchers investigated how methane that resides with Titan’s crust could be responsible for the lack of depth in Titan’s impact craters, which could explain why Titan’s atmosphere has so much methane, as well. This study holds the potential to help researchers better understand the formation and evolution of Titan and whether it could host life as we know it.

For the study, the researchers used computer models to simulate the formation and evolution of impact craters on Titan, of which only approximately 90 have been identified via satellite imagery from NASA’s Cassini spacecraft.

Continue reading “Titan’s Atmosphere and Climate: Lessons from an Alien World” »

Oct 25, 2024

Removal of Russian coders spurs debate about Linux kernel’s politics

Posted by in categories: computing, policy

A two-line comment about “various compliance requirements” spurred questions about sanctions policy and procedure on the Linux kernel mailing list.

Oct 24, 2024

This Theory of Everything Could Actually Work: Wolfram’s Hypergraphs

Posted by in categories: computing, physics

Brush up on your physics knowledge with Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Mathematician and Computer Scientist Stephen Wolfram wants to do no less than revolutionising physics. He wants to do it with computer code that gives rise to all the fundamental laws of nature that we know and like — and maybe more. Unfortunately, Einstein’s theories of general relativity inherently clash with how computers work. And yet, he and his team might have found a clever way around this problem.

Continue reading “This Theory of Everything Could Actually Work: Wolfram’s Hypergraphs” »

Oct 24, 2024

Atmospheric Stability on M-Dwarf Planets: Implications for Life Beyond Earth

Posted by in categories: alien life, computing

Can rocky exoplanets orbiting stars smaller than our Sun support life as we know it? This is what a recent study published in Nature Communications hopes to address as an international team of researchers examined the atmospheric stability of exoplanets orbiting M-dwarf stars, which typically range from 7.5 percent to 50 percent of our Sun’s mass and surface temperatures of approximately 3,500 degrees Celsius (6,300 degrees Fahrenheit) with our Sun boasting surface temperatures of approximately 5,000 degrees Celsius (9,000 degrees Fahrenheit). This study holds the potential to help astronomers better understand the conditions for finding life beyond Earth and where we can find it.

For the study, the researchers examined TRAPPIST-1, which is an M-dwarf star located approximately 40 light-years from Earth while boasting seven rocky exoplanets, several of which orbit within its star’s habitable zone (HZ). Using computer models, the team simulated the formation and evolution of the orbiting exoplanets to ascertain if their individual atmospheres could remain stable over time to form a habitable environment. In the end, the team found that the exoplanets that orbit close to their star likely do not possess stable atmospheres, but found promising results for exoplanets orbiting farther out, specifically TRAPPIST-1 e.

“One of the most intriguing questions right now in exoplanet astronomy is: Can rocky planets orbiting M-dwarf stars maintain atmospheres that could support life?” said Dr. Joshua Krissansen-Totton, who is an assistant professor of Earth and space sciences at the University of Washington and lead author of the study. “Our findings give reason to expect that some of these planets do have atmospheres, which significantly enhances the chances that these common planetary systems could support life.”

Oct 24, 2024

DNA stores data in bits after epigenetic upgrade

Posted by in categories: biotech/medical, chemistry, computing, genetics

An innovative method now allows DNA to store information as a binary code — the same strings of 0s and 1s used by standard computers.


‘Bricks’ of DNA, some of which have chemical tags, could one day be an alternative to storing information electronically.

Oct 24, 2024

New microchip design harnesses sound waves on the surface for advanced sensing technologies

Posted by in category: computing

A team of researchers has for the first time successfully used lasers to generate guided sound waves on the surface of a microchip. These acoustic waves, akin to the surface waves produced during an earthquake, travel across the chip at frequencies nearly a billion times higher than those found in earth tremors.

By containing the sound wave on the surface of a chip, it can more easily interact with the environment, making it a perfect candidate for advanced sensing technologies.

The findings are published in APL Photonics.

Oct 24, 2024

Superconductivity offers new insights into quantum material MnBi₂Te₄

Posted by in categories: computing, quantum physics

For the first time since the discovery of the material MnBi2Te4 (MBT), researchers at the University of Twente have successfully made it behave like a superconductor. This marks an important step in understanding MBT and is significant for future technologies, such as new methods of information processing and quantum computing.

MBT is a recently discovered material attracting attention due to its unique magnetic and . In their research, the scientists examined how electricity behaves in the material. The findings are published in the journal Communications Materials.

MBT’s topological properties cause electrons to move only along the edges of the material, and in theory, they should only move in a clockwise direction. However, the experiments at Twente demonstrated that under certain conditions, the electrons can rotate both clockwise and counterclockwise.

Page 10 of 861First7891011121314Last