Menu

Blog

Archive for the ‘chemistry’ category: Page 273

Nov 10, 2020

Marine Fungi: A Source of Potential Anticancer Compounds

Posted by in categories: biotech/medical, chemistry

Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

Marine fungi are important source of secondary metabolites useful for the drug discovery purposes. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from the drug discovery perspective adding to their importance in the natural product discovery (Molinski et al., 2009; Butler et al., 2014), which have yielded a wide range of chemically diverse agents with antibacterial, antiviral and anticancer properties in animal systems. Starting with the celebrated example of cephalosporins, marine fungi have provided unique chemical skeletons that could be used to develop drugs of clinical importance (Bhadury et al., 2006; Saleem et al., 2007; Javed et al., 2011; Sithranga and Kathiresan, 2011). Fungi, in general, have been generous source of drugs as evidenced by the isolation of many drugs in use such as paclitaxel, camptothecin, vincristine, torreyanic acid and cytarabine to name a few.

Nov 10, 2020

Making 3D nanosuperconductors with DNA

Posted by in categories: biotech/medical, chemistry, computing, engineering, nanotechnology, quantum physics

Three-dimensional (3D) nanostructured materials—those with complex shapes at a size scale of billionths of a meter—that can conduct electricity without resistance could be used in a range of quantum devices. For example, such 3D superconducting nanostructures could find application in signal amplifiers to enhance the speed and accuracy of quantum computers and ultrasensitive magnetic field sensors for medical imaging and subsurface geology mapping. However, traditional fabrication tools such as lithography have been limited to 1-D and 2-D nanostructures like superconducting wires and thin films.

Now, scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Columbia University, and Bar-Ilan University in Israel have developed a platform for making 3D superconducting nano-architectures with a prescribed organization. As reported in the Nov. 10 issue of Nature Communications, this platform is based on the self-assembly of DNA into desired 3D shapes at the nanoscale. In DNA self-assembly, a single long strand of DNA is folded by shorter complementary “staple” strands at specific locations—similar to origami, the Japanese art of paper folding.

“Because of its structural programmability, DNA can provide an assembly platform for building designed nanostructures,” said co-corresponding author Oleg Gang, leader of the Soft and Bio Nanomaterials Group at Brookhaven Lab’s Center for Functional Nanomaterials (CFN) and a professor of chemical engineering and of applied physics and at Columbia Engineering. “However, the fragility of DNA makes it seem unsuitable for functional device fabrication and nanomanufacturing that requires inorganic materials. In this study, we showed how DNA can serve as a scaffold for building 3D nanoscale architectures that can be fully “converted” into inorganic materials like superconductors.”

Nov 9, 2020

Jupiter’s moon Europa glows in the dark, scientists say

Posted by in categories: chemistry, space

The glow could help scientists determine if a subsurface ocean on Europa is a good place to look for life.


Intense radiation from the giant planet Jupiter causes the night side of its moon Europa to visibly glow in the dark – a phenomenon that could help scientists learn if it can sustain simple forms of life, according to a new study.

The findings, published Monday in the journal Nature Astronomy, were the result of experiments by NASA scientists to study how Jupiter’s radiation affects the chemistry of Europa, which is thought to harbor a subsurface ocean of water.

Continue reading “Jupiter’s moon Europa glows in the dark, scientists say” »

Nov 9, 2020

Cell aging can be slowed by oxidants

Posted by in categories: biotech/medical, chemistry, life extension

At high concentrations, reactive oxygen species—known as oxidants—are harmful to cells in all organisms and have been linked to aging. But a study from Chalmers University of Technology, Sweden, has now shown that low levels of the oxidant hydrogen peroxide can stimulate an enzyme that helps slow down the aging of yeast cells.

One benefit of antioxidants, such as vitamins C and E, is that they neutralize —known as oxidants—which may otherwise react with important molecules in the body and destroy their biological functions. Larger amounts of oxidants can cause serious damage to DNA, cell membranes and proteins for example. Our have therefore developed powerful defense mechanisms to get rid of these oxidants, which are formed in our normal metabolism.

It was previously believed that oxidants were only harmful, but recently, scientists have begun to understand that they also have positive functions. Now, the new research from Chalmers University of Technology shows that the well-known hydrogen peroxide can actually slow down the aging of yeast cells. Hydrogen peroxide is a chemical used for hair and tooth whitening, among other things. It is also one of the metabolically produced oxidants that is harmful at higher concentrations.

Nov 4, 2020

Researchers discover a new way to produce hydrogen using microwaves

Posted by in categories: chemistry, energy, transportation

A team of researchers from the Polytechnic University of Valencia and the Spanish National Research Council (CSIC) has discovered a new method that makes it possible to transform electricity into hydrogen or chemical products solely using microwaves—without cables and without any type of contact with electrodes. This represents a revolution in the field of energy research and a key development for the process of industrial decarbonisation, as well as for the future of the automotive sector and the chemical industry, among many others. The study has been published in the latest edition of Nature Energy, where the discovery is explained.

The technology developed and patented by the UPV and CSIC is based on the phenomenon of the reduction of solid materials. This method makes it possible to carry out electrochemical processes directly without requiring electrodes, which simplifies and significantly cheapens its practical use, as it provides more freedom in the design of the structure of the device and choosing the operation conditions, mainly the temperature. It is a technology with great practical potential, especially for its use in storing energy and producing synthetic fuels and green chemical products. This aspect has significant importance today, as both transportation and industry are immersed in a transition to decarbonise, meaning they have to meet very demanding goals between 2030 and 2040 to decrease the consumption of energy and substances from fossil sources, mainly natural gas and oil, highlights José Manuel Serra, research lecturer of the CSIC at the Chemical Technology Institute.

Nov 4, 2020

Science of Building Bones with Eggshells and Origami

Posted by in categories: bioengineering, biotech/medical, chemistry, life extension, science

Origami-inspired tissue engineering — using eggshells, plant leaves, marine sponges, and paper as substrates.


Ira Pastor ideaXme life sciences ambassador interviews Dr. Gulden Camci-Unal, Ph.D. Assistant Professor, at the Department Chemical Engineering, Francis College of Engineering, UMass Lowell.

Continue reading “Science of Building Bones with Eggshells and Origami” »

Nov 1, 2020

How Coronavirus Can Be Stopped: 3D Atomic Map of COVID-19’s Viral Replication Mechanism

Posted by in categories: biological, biotech/medical, chemistry, particle physics

To better understand how the novel coronavirus behaves and how it can be stopped, scientists have completed a three-dimensional map that reveals the location of every atom in an enzyme molecule critical to SARS-CoV-2 reproduction.

Researchers at the Department of Energy’s Oak Ridge National Laboratory used neutron scattering to identify key information to improve the effectiveness of drug inhibitors designed to block the virus’s replication mechanism. The research is published in the Journal of Biological Chemistry.

The SARS-CoV-2 virus, which causes the COVID-19 disease, expresses long chains of proteins composed of approximately 1,900 amino acid residues. For the virus to reproduce, those chains have to be broken down and cut into smaller strands by an enzyme called the main protease. The active protease enzyme is formed from two identical protein molecules held together by hydrogen bonds. Developing a drug that inhibits or blocks the protease activity will prevent the virus from replicating and spreading to other cells in the body.

Oct 31, 2020

Bengaluru Engineers Create World’s First Plastic As Strong As Steel, While Staying Lightweight

Posted by in categories: chemistry, transportation

If this thing becomes successful, I think it could enable plastics to replace steel in a lot of vehicles and machinery.


Engineers are always on the lookout for materials that can improve the performance of their existing products. Carmakers too are always on the lookout to make lighter yet stronger parts to help cars perform better. And, in most cases, these solutions come at a pretty hefty cost.

Continue reading “Bengaluru Engineers Create World’s First Plastic As Strong As Steel, While Staying Lightweight” »

Oct 30, 2020

Flash graphene rocks strategy for plastic waste

Posted by in categories: chemistry, sustainability

Plastic waste comes back in black as pristine graphene, thanks to ACDC.

That’s what Rice University scientists call the process they employed to make efficient use of waste that would otherwise add to the planet’s environmental woes. In this instance, the lab of Rice chemist James Tour modified its method to make flash graphene to enhance it for recycling plastic into graphene.

The lab’s study appears in the American Chemical Society journal ACS Nano.

Oct 29, 2020

Team finds path to nanodiamond from graphene

Posted by in categories: chemistry, nanotechnology

Marrying two layers of graphene is an easy route to the blissful formation of nanoscale diamond, but sometimes thicker is better.

While it may only take a bit of heat to turn a treated bilayer of the ultrathin material into a cubic lattice of diamane, a bit of in just the right place can convert few-layer graphene as well.

The otherwise chemically driven process is theoretically possible according to scientists at Rice University, who published their most recent thoughts on making high-quality diamane—the 2-D form of diamond—in the journal Small.