Menu

Blog

Archive for the ‘bioengineering’ category: Page 33

Oct 14, 2023

Engineered Probiotic Bacteria Colonize Tumors, Attract CAR-T Cells

Posted by in categories: bioengineering, biotech/medical, genetics

Researchers at Columbia University have developed a probiotic-guided chimeric antigen receptor (CAR)-T platform that uses engineered bacteria to infiltrate and produce synthetic antigen targets, enabling CAR-T cells to find, identify, and destroy tumor cells in situ. The results of in vivo preclinical tests suggest that the combined ProCAR cell therapy platform could expand the scope of CAR-T cell therapy to include difficult-to-target solid tumors.

Tal Danino, PhD, and Rosa L. Vincent, PhD, at Columbia University’s department of biomedical engineering, and colleagues, reported on their developments in Science, in a paper titled “Probiotic-guided CAR-T cells for solid tumor targeting,” in which they concluded, “These findings highlight the potential of the ProCAR platform to address the roadblock of identifying suitable CAR targets by providing an antigen that is orthogonal to both healthy tissue and tumor genetics … Overall, combining the advantages of tumor-homing bacteria and CAR-T cells provides a new strategy for tumor recognition and, in turn, builds the foundation for engineered communities of living therapies.”

Immunotherapies using CAR-T cells have proven successful in treating some types of blood cancers, but their efficacy against solid tumors remains elusive. A key challenge facing tumor-antigen targeting immunotherapies like CAR-T is the identification of suitable targets that are specifically and uniformly expressed on solid tumors, the authors noted. “A key challenge of antigen-targeted cell therapies relates to the expression patterns of the antigen itself, which makes the identification of optimal targets for solid tumor cell therapies an obstacle for the development of new CARs.” Solid tumors express heterogeneous and nonspecific antigens and are poorly infiltrated by T cells. As a result, the approach carries a high risk of fatal on-target, off-tumor toxicity, wherein CAR-T cells attack the targeted antigen on healthy vital tissues with potentially fatal effects.

Oct 10, 2023

Spheroids vs. Organoids—A Data-Driven Approach for 3D Culture Model Selection

Posted by in categories: bioengineering, biotech/medical, life extension

In this October 13 Learning Lab, Hilary Sherman, a Senior Scientist in the Corning Life Sciences Applications Lab, and Robert Padilla, a Field Application Scientist at Corning, dive into the topic of 3D culture techniques and why these technologies should be a part of any researcher’s repertoire.


Three-dimensional (3D) cultures such as spheroids and organoids are an important part of the research model market, helping to close the gap between cell cultures and animal models. Both organoids and spheroids have been used to create in vivo-like tissue models of cancer subtypes to study novel therapies and to make models for tissue engineering and regenerative medicine studies. But there are some key differences, with important implications for various applications. The right tool for a project is not always obvious. For spheroids and organoids, knowing where the cultures are similar and where they differ will help scientists select the best resource for their projects the first time around.

Oct 7, 2023

Robotic cup helps wheelchair users stay hydrated

Posted by in categories: bioengineering, robotics/AI

Mobility impairments such as those caused by cerebral palsy make it hard for people to perform even simple tasks like drinking a sip of water.

Gary Lynn, a Houstonian living with the condition, turned to Rice University’s Oshman Engineering Design Kitchen (OEDK) for help making the idea of an assistive-drinking device a reality. Rice undergraduate engineering students Thomas Kutcher and Rafe Neathery rose to the challenge, and the result is RoboCup ⎯ a robotic device that enables people with limited mobility to stay hydrated without help.

“We wanted to make it possible for people with cerebral palsy or similar mobility challenges to drink water autonomously rather than needing to rely on caregiver assistance,” said Kutcher, who is a bioengineering major. “The device is designed for wheelchair users who might have trouble holding a cup, and our hope is that it will grant users greater freedom.”

Oct 7, 2023

Humanity in 2050

Posted by in categories: bioengineering, biotech/medical, genetics, life extension, robotics/AI

👉For business inquiries: [email protected].
✅ Instagram: https://www.instagram.com/pro_robots.

In the quest to overcome the limitations of the human body and mind, scientists worldwide are diligently working on various technologies. The question arises: What will human beings become after undergoing numerous enhancements? Will we retain our identity while embracing the possibilities offered by artificial intelligence? What extraordinary capabilities will biotechnology bestow upon us? And how will our emotions and desires evolve as our bodies undergo transformation?

Continue reading “Humanity in 2050” »

Oct 6, 2023

With first-in-human trial results, Intellia shows the world that gene editing has arrived

Posted by in categories: bioengineering, biotech/medical

All medical breakthroughs have to start somewhere, and Intellia Therapeutics is ready to show the world the first-in-human gene editing data that could be the start of a | Interim results are in for Intellia and partner Regeneron’s in vivo CRISPR/Cas9 genome editing candidate, NTLA-2001, in patients with transthyretin (ATTR) amyloidosis: and the numbers look good. This is the first time gene editing has been proven to work in humans, which “opens up a whole new area of therapies for patients that wasn’t there.”

Oct 4, 2023

Nano-mechanoelectrical approach increases DNA detection sensitivity by 100 times

Posted by in categories: bioengineering, biotech/medical, health, nanotechnology

UMass Amherst researchers have pushed forward the boundaries of biomedical engineering one hundredfold with a new method for DNA detection with unprecedented sensitivity.

“DNA detection is in the center of bioengineering,” says Jinglei Ping, lead author of the paper that appeared in Proceedings of the National Academy of Sciences.

Ping is an assistant professor of mechanical and , an adjunct assistant professor in and affiliated with the Center for Personalized Health Monitoring of the Institute for Applied Life Sciences. “Everyone wants to detect the DNA at a low concentration with a high sensitivity. And we just developed this method to improve the sensitivity by about 100 times with no cost.”

Oct 3, 2023

Dr. Alex Colville, Ph.D. — Co-Founder and General Partner — age1

Posted by in categories: bioengineering, biotech/medical, chemistry, finance, genetics, life extension

Venture Investing To Catalyze The Next Generation Of Founder-Led, Longevity Biotech Companies — Dr. Alex Colville, Ph.D., Co-Founder and General Partner — age1.


Dr. Alex Colville, Ph.D. is Co-Founder and General Partner of age1 (https://age1.com/), a venture capital firm focused on catalyzing the next generation of founder-led, longevity biotech companies, with a strategy of building a community of visionaries advancing new therapeutics, tools, and technologies targeting aging and age-related diseases.

Continue reading “Dr. Alex Colville, Ph.D. — Co-Founder and General Partner — age1” »

Oct 2, 2023

“Inverse vaccine” shows potential to treat multiple sclerosis and other autoimmune diseases

Posted by in categories: bioengineering, biotech/medical, neuroscience

A typical vaccine teaches the human immune system to recognize a virus or bacteria as an enemy that should be attacked. The new “inverse vaccine” does just the opposite: it removes the immune system’s memory of one molecule. While such immune memory erasure would be unwanted for infectious diseases, it can stop autoimmune reactions like those seen in multiple sclerosis, type I diabetes, or rheumatoid arthritis, in which the immune system attacks a person’s healthy tissues.

The inverse vaccine, described in Nature Biomedical Engineering, takes advantage of how the liver naturally marks molecules from broken-down cells with “do not attack” flags to prevent autoimmune reactions to cells that die by natural processes. PME researchers coupled an antigen — a molecule being attacked by the immune system— with a molecule resembling a fragment of an aged cell that the liver would recognize as friend, rather than foe. The team showed how the vaccine could successfully stop the autoimmune reaction associated with a multiple-sclerosis-like disease.

“In the past, we showed that we could use this approach to prevent autoimmunity,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering and lead author of the new paper. “But what is so exciting about this work is that we have shown that we can treat diseases like multiple sclerosis after there is already ongoing inflammation, which is more useful in a real-world context.”

Oct 1, 2023

Longevity Summit Dublin

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

The last 2 questions and the answers are great. The first starts at 30 minutes. And I like his answer to the 2nd question especially, the time is 33:54. “What is giving me great hope is that we’re entering the phases where we have more than enough tools to get really get close to escape velocity.”


Genome Engineering for Healthy Longevity – George Church at Longevity Summit Dublin 2023.

Continue reading “Longevity Summit Dublin” »

Sep 30, 2023

Examining the genesis of CRISPR’s molecular scissors

Posted by in categories: bioengineering, biotech/medical

Genome engineering may be the future of medicine, but it relies on evolutionary advances made billions of years ago in primordial bacteria, the original masters of gene editing.

Modern day genome engineers like Columbia’s Sam Sternberg are always looking forward, modifying these ancient systems and pushing them to perform ever more complex feats of gene editing.

But to uncover , it sometimes pays to look backward in time to understand how bacteria first created the original systems, and why.

Page 33 of 222First3031323334353637Last