Menu

Blog

Archive for the ‘bioengineering’ category: Page 26

Jan 1, 2024

A global dataset of pandemic- and epidemic-prone disease outbreaks

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

I believe nanomachines or new advanced rna antivirals that can target one’s own variants of viruses will be game changers to prevent future global pandemics. Also eventually new genetic engineering could allow for the end to all viruses with some sorta Omni vaccine.


Measurement(s) Pandemic-and epidemic-prone disease outbreaks Technology Type(s) Text mining using R Sample Characteristic — Organism Disease outbreaks Sample Characteristic — Environment spatiotemporal region Sample Characteristic — Location Global.

Dec 30, 2023

The LIFE-EXTENSION Doctor: “The ONE thing that’s increasing your chance of early-death by 170.8%!”

Posted by in categories: bioengineering, biotech/medical, life extension

In this new episode Steven sits down with the physician and longevity expert, Dr Peter Attia. 0:00 Intro 03:26 What is your mission? 06:52 Medicine 3.0 14:51 When should we really think about diseases? 23:14 What role does trauma play in longevity? 47:24 The 5 health deterioration 50:16 Proof exercise is important 01:04:48 Body deterioration can be slowed down 01:08:38 How much exercise should we be doing? 01:14:03 The importance of stability 01:20:59 We’ve engineered discomfort out of our lives 01:26:29 Sugar 01:34:16 Misconceptions about weight loss 01:45:13 Alcohol 01:49:13 Sleep 01:52:35 Hormone replacement therapy 01:57:07 Hair loss 01:59:48 The last guests question You can purchase Dr Attia’s new book, ‘Outlive: The Science and Art of Longevity’, here — https://amzn.to/3FUD6ok Follow Dr Attia: Instagram: https://bit.ly/3rBMyJ7 Twitter: https://bit.ly/44DkrYF YouTube: https://bit.

Dec 28, 2023

CRISPR Gene Editing Had a Breakthrough Year—and It’s Only Getting Started

Posted by in categories: bioengineering, biotech/medical

CRISPR had a huge year. Even better, it’s still a work in progress, with the potential to reshape biotechnology for decades to come.

Dec 28, 2023

Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age

Posted by in categories: bioengineering, economics, genetics, information science, nanotechnology, robotics/AI

An interview with J. Storrs Hall, author of the epic book “Where is My Flying Car — A Memoir of Future Past”: “The book starts as an examination of the technical limitations of building flying cars and evolves into an investigation of the scientific, technological, and social roots of the economic…


J. Storrs Hall or Josh is an independent researcher and author.

Continue reading “Ep. 20: J. Storrs Hall — Bringing Back A Future Past With Flying Cars, Nano-Robots and Multi-Level Cities By Nurturing A Techno-Optimist Culture and a Unleashing Second Nuclear Age” »

Dec 27, 2023

Why ‘resurrection biology’ is gaining traction around the world

Posted by in categories: bioengineering, biotech/medical, existential risks, genetics

Resurrection biology — attempting to bring strings of molecules and more complex organisms back to life — is gaining traction in labs around the world.

The work is a far cry from the genetically engineered dinosaurs that escape in the blockbuster movie “Jurassic Park,” although for some scientists the ultimate goal is de-extinction and resurrecting animals and plants that have been lost.

Other researchers are looking to the past for new sources of drugs or to sound an alarm about the possibility of long-dormant pathogens. The field of study is also about recreating elements of human history in an attempt to better understand how our ancestors might have lived and died.

Dec 24, 2023

The Genetic Revolution: The Manipulation of Human DNA | Documentary

Posted by in categories: bioengineering, biotech/medical, education, genetics

The Genetic Revolution is a compelling science documentary that invites viewers into the groundbreaking world of DNA manipulation and genetic engineering. This intriguing documentary showcases the innovative science behind genetic modifications and chronicles a diverse team of scientists from around the world as they utilize advanced DNA editing technologies like CRISPR in ways previously deemed unthinkable.\

With its exploration into the rapidly evolving science of DNA editing, \.

Dec 24, 2023

Bioengineers building the intersection of organoids and AI with ‘Brainoware’

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Feng Guo, an associate professor of intelligent systems engineering at the Indiana University Luddy School of Informatics, Computing and Engineering, is addressing the technical limitations of artificial intelligence computing hardware by developing a new hybrid computing system—which has been dubbed “Brainoware”—that combines electronic hardware with human brain organoids.

Advanced AI techniques, such as and , which are powered by specialized silicon computer chips, expend enormous amounts of energy. As such, engineers have designed neuromorphic computing systems, modeled after the structure and function of a human brain, to improve the performance and efficiency of these technologies. However, these systems are still limited in their ability to fully mimic brain function, as most are built on digital electronic principles.

In response, Guo and a team of IU researchers, including graduate student Hongwei Cai, have developed a hybrid neuromorphic computing system that mounts a brain organoid onto a multielectrode assay to receive and send information. The brain organoids are brain-like 3D cell cultures derived from and characterized by different brain cell types, including neurons and glia, and brain-like structures such as ventricular zones.

Dec 23, 2023

This first CRISPR gene-editing treatment is just the beginning. Here’s what’s coming next

Posted by in categories: bioengineering, biotech/medical, chemistry, food, genetics, robotics/AI

2023 was the year that CRISPR gene-editing sliced its way out of the lab and into the public consciousness—and American medical system. The Food and Drug Administration recently approved the first gene-editing CRISPR therapy, Casgevy (or exa-cel), a treatment from CRISPR Therapeutics and partner Vertex for patients with sickle cell disease. This comes on the heels of a similar green light by U.K. regulators in a historic moment for a gene-editing technology whose foundations were laid back in the 1980s, eventually resulting in a 2020 Nobel Prize in Chemistry for pioneering CRISPR scientists Jennifer Doudna and Emmanuelle Charpentier.

That decades-long gap between initial scientific spark, widespread academic recognition, and now the market entry of a potential cure for blood disorders like sickle cell disease that afflict hundreds of thousands of people around the world is telling. If past is prologue, even newer CRISPR gene-editing approaches being studied today have the potential to treat diseases ranging from cancer and muscular dystrophy to heart disease, birth more resilient livestock and plants that can grapple with climate change and new strains of deadly viruses, and even upend the energy industry by tweaking bacterial DNA to create more efficient biofuels in future decades. And novel uses of CRISPR, with assists from other technologies like artificial intelligence, might fuel even more precise, targeted gene-editing—in turn accelerating future discovery with implications for just about any industry that relies on biological material, from medicine to agriculture to energy.

With new CRISPR discoveries guided by AI, specifically, we can expand the toolbox available for gene editing, which is crucial for therapeutic, diagnostic, and research applications… but also a great way to better understand the vast diversity of microbial defense mechanisms, said Feng Zhang, another CRISPR pioneer, molecular biologist, and core member at the Broad Institute of MIT and Harvard in an emailed statement to Fast Company.

Dec 22, 2023

New, DNA-Dependent Gene Editing Technology Could Shift the Paradigm of Precise Editing

Posted by in categories: bioengineering, biotech/medical, chemistry

For instance, the pegRNA molecules used in prime editing are difficult and expensive to chemically synthesise or laborious to clone, which hampers the crucial optimisation of prime-editing efficiency. Additionally, the reverse transcriptase (RT) enzymes used in prime editing are relatively error-prone and have low processivity, which may limit the precision and size of edits that can be introduced. Furthermore, RTs have a low affinity for dNTPs, which can impact prime-editing efficiency in non-dividing and differentiated cells.

To address these issues, two research groups led by Dr. Ben Kleinstiver at Mass General Hospital (MGH) & Harvard Medical School, and Dr. Erik Sontheimer at the RNA Therapeutics Institute (UMass Chan Medical School) have independently developed new approaches that build upon prime editing by replacing RT with another type of enzyme, namely a DNA-dependent DNA polymerase. This change permits the use of DNA instead of RNA as a template for editing, potentially addressing some of the main limitations of prime editing by allowing higher efficiency and adaptability.

Dec 20, 2023

From Blacksmiths to Beamlines: 3D Atomic Revelations Transform Alloy Engineering

Posted by in categories: bioengineering, mapping, transportation

UCLA breaks new ground in alloy research, presenting the first 3D mapping of medium and high-entropy alloys, potentially revolutionizing the field with enhanced toughness and flexibility in these materials.

Alloys, which are materials such as steel that are made by combining two or more metallic elements, are among the underpinnings of contemporary life. They are essential for buildings, transportation, appliances and tools — including, very likely, the device you are using to read this story. In applying alloys, engineers have faced an age-old trade-off common in most materials: Alloys that are hard tend to be brittle and break under strain, while those that are flexible under strain tend to dent easily.

Advancements in Alloy Research.

Page 26 of 222First2324252627282930Last