Menu

Blog

Archive for the ‘quantum physics’ category: Page 36

Sep 10, 2024

Microsoft-led Team Achieves Record for Reliable Logical Qubits in Quantum Computing

Posted by in categories: computing, quantum physics

According to Zander, the company’s recent work builds on a blockbuster advance that Microsoft and Quantinuum announced in the spring.

Zander writes: “In April, we announced that we’re entering the next phase for solving meaningful problems with reliable quantum computers by demonstrating the most reliable logical qubits with an error rate 800x better than physical qubits.” He adds, “In less than six months, our improved qubit-virtualization system tripled reliable logical qubit counts.”

The advance goes to the heart of a primary challenge in quantum computing today: the unreliability of physical qubits, which are prone to errors due to their highly sensitive nature. Microsoft addressed this issue by creating logical qubits, which are collections of physical qubits working together to correct errors and maintain coherence.

Sep 9, 2024

Atoms on the edge

Posted by in categories: particle physics, quantum physics

Typically, electrons are free agents that can move through most metals in any direction. When they encounter an obstacle, the charged particles experience friction and scatter randomly like colliding billiard balls.

But in certain exotic materials, electrons can appear to flow with single-minded purpose. In these materials, electrons may become locked to the material’s edge and flow in one direction, like ants marching single-file along a blanket’s boundary. In this rare “edge state,” electrons can flow without friction, gliding effortlessly around obstacles as they stick to their perimeter-focused flow. Unlike in a superconductor, where all electrons in a material flow without resistance, the current carried by edge modes occurs only at a material’s boundary.

Now MIT physicists have directly observed edge states in a cloud of ultracold atoms. For the first time, the team has captured images of atoms flowing along a boundary without resistance, even as obstacles are placed in their path. The results, which appear in Nature Physics (“Observation of chiral edge transport in a rapidly rotating quantum gas”), could help physicists manipulate electrons to flow without friction in materials that could enable super-efficient, lossless transmission of energy and data.

Sep 9, 2024

A New Theory of Everything Just Dropped!

Posted by in categories: open access, quantum physics

Learn maths and science on Brilliant! If you use my link, the first 30 days are free, plus you get 20% off the annual premium subscription ➜ https://brilliant.org/sabine.

I got a bunch of requests to comment on a new attempt at a theory of everything that supposedly combines quantum physics with general relativity. I had a look, and this is a quick comment. First reaction, basically. Didn’t get far in the paper, as you will see. I am sorry in case I appear unkind, but this kind of stuff really pisses me off.

Continue reading “A New Theory of Everything Just Dropped!” »

Sep 9, 2024

Detecting single gravitons with quantum sensing

Posted by in categories: energy, quantum physics

While it has been suggested that low-energy experiments might allow to find evidence for quantization of gravity, direct detection of single gravitons has normally been considered a hopeless task. Here, the authors suggest that a massive body cooled to the ground state in a gravitational wave background should display detectable stimulated single gravitonions.

Sep 9, 2024

Retrocausality: Cause After Effect

Posted by in categories: media & arts, quantum physics

If you love card games, definitely check out Doomlings. Click here and use code ISAAC20 to get 20% off of your copy of Doomlings! https://bit.ly/IsaacDoomlings.
Could something in the future alter the past, so that effect came before cause? Does quantum mechanics truly allow this, as often hinted?

Join this channel to get access to perks:
/ @isaacarthursfia.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Continue reading “Retrocausality: Cause After Effect” »

Sep 9, 2024

Quantum Experiment Could Finally Reveal The Elusive Gravity Particle

Posted by in categories: particle physics, quantum physics

The graviton – a hypothetical particle that carries the force of gravity – has eluded detection for over a century. But now physicists have designed an experimental setup that could in theory detect these tiny quantum objects.

In the same way individual particles called photons are force carriers for the electromagnetic field, gravitational fields could theoretically have its own force-carrying particles called gravitons.

The problem is, they interact so weakly that they’ve never been detected, and some physicists believe they never will.

Sep 8, 2024

Scientists Say Wormholes Are Secretly Altering Our Reality

Posted by in categories: cosmology, quantum physics

Scientists say microscopic wormholes could explain discrepancies in cosmological constants and affect our understanding of quantum mechanics and dark energy.

Sep 8, 2024

Scientists Combine Quantum Internet With Conventional Internet in Landmark Discovery

Posted by in categories: computing, encryption, internet, quantum physics, security

Researchers at Leibniz University Hannover have developed a technology for transmitting entangled photons through optical fibers, which could enable the integration of quantum and conventional internet, promising enhanced security and efficient use of existing infrastructure.

A team of four researchers from the Institute of Photonics at Leibniz University Hannover has developed an innovative transmitter-receiver system for transmitting entangled photons via optical fiber.

This breakthrough could enable the next generation of telecommunications technology, the quantum Internet, to be routed via optical fibers. The quantum Internet promises eavesdropping-proof encryption methods that even future quantum computers cannot decrypt, ensuring the security of critical infrastructure.

Sep 8, 2024

Stabilizing Remote Entanglement via Waveguide Dissipation

Posted by in categories: quantum physics, robotics/AI

Popular Summary.

Remote entanglement is crucial for quantum computing, sensing, and communication. Traditional methods for entanglement generation often depend on direct interactions between quantum bits (qubits) or the exchange of entangled photons. In this study, we demonstrate an alternative approach, where we create and preserve entanglement between two noninteracting qubits through dissipation into a shared waveguide.

While dissipation is typically viewed as detrimental, tailored dissipation can be harnessed to drive a system into complex quantum states while actively protecting it from decoherence. This approach, known as autonomous stabilization, has been previously used to create entanglement. However, entanglement stabilization has been confined to short distances due to the challenge of engineering shared dissipation between remote sites. Our experiment overcomes this challenge by employing an open waveguide as a one-dimensional photonic bath. We demonstrate that, under appropriate conditions, the interference of photons emitted into a waveguide from two qubits can stabilize them in an entangled stationary state when the qubits are strongly driven. Crucially, we can reconstruct the entangled state despite significant waveguide-induced dissipation by measuring the emitted photons. Our demonstration is made possible by precise control over qubit frequencies and efficient qubit-waveguide interfaces in superconducting circuits.

Sep 8, 2024

Shelter Island Conference

Posted by in category: quantum physics

Eminent physicists assemble to discuss quantum enigmas.

John von Neumann, John Wheeler, Hans Bethe, Robert Serber, Robert Marshak, Abraham Pais, J. Robert Oppenheimer, David Bohm, and Richard Feynman at the Shelter Island Conference of 1947:

https://repository.aip.org/islandora/object/nbla%3A310818

Continue reading “Shelter Island Conference” »

Page 36 of 836First3334353637383940Last